-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathllm_ppo_agent.py
477 lines (392 loc) · 22.1 KB
/
llm_ppo_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
from .base_ppo_agent import BasePPOAgent
import babyai.utils
from babyai.rl.utils import DictList
import os
import torch
import torch.nn.functional as F
from torch.distributions import Categorical
import numpy as np
from tqdm import tqdm
from collections import deque
import logging
class LLMPPOAgent(BasePPOAgent):
def __init__(self, envs, lm_server, llm_scoring_module_key, nbr_llms=None, num_frames_per_proc=None, discount=0.99,
lr=7e-4, beta1=0.9, beta2=0.999, gae_lambda=0.95, entropy_coef=0.01, value_loss_coef=0.5,
max_grad_norm=0.5, adam_eps=1e-5, clip_eps=0.2, epochs=4, batch_size=64, reshape_reward=None,
name_experiment=None, saving_path_model=None, saving_path_logs=None, number_envs=None, subgoals=None,
nbr_obs=3, id_expe=None, template_test=1, aux_info=None, debug=False):
super().__init__(envs, num_frames_per_proc, discount, lr, gae_lambda, entropy_coef, value_loss_coef,
max_grad_norm, reshape_reward, aux_info, device=torch.device("cpu"))
self.lm_server = lm_server
self.llm_scoring_module_key = llm_scoring_module_key
# Useful filter to avoid computing score of each candidate when using additional heads directly
if llm_scoring_module_key == "score":
self.filter_candidates_fn = lambda candidates: candidates
elif llm_scoring_module_key == "policy_head":
self.filter_candidates_fn = lambda candidates: None
else:
raise NotImplementedError()
self.nbr_obs = nbr_obs
self.obs_queue = [deque([], maxlen=self.nbr_obs) for _ in range(self.num_procs)]
self.acts_queue = [deque([], maxlen=self.nbr_obs - 1) for _ in range(self.num_procs)]
self.subgoals = subgoals
shape = (self.num_frames_per_proc, self.num_procs)
logging.info("resetting environment")
self.obs, self.infos = self.env.reset()
logging.info("reset environment")
for i in range(self.num_procs):
self.obs_queue[i].append(self.infos[i]['descriptions'])
self.prompts = [None] * (shape[0])
self.actions = torch.zeros(*shape, device=self.device, dtype=torch.int)
self.nbr_llms = nbr_llms
self.clip_eps = clip_eps
self.epochs = epochs
self.batch_size = batch_size
self.debug = debug
self.beta1 = beta1
self.beta2 = beta2
self.adam_eps = adam_eps
self.name_experiment = name_experiment
self.saving_path_model = saving_path_model
self.saving_path_logs = saving_path_logs
self.number_envs = number_envs
self.id_expe = id_expe
self.template_test = template_test
self.number_updates = 0
self.experiment_path = os.path.join(self.saving_path_logs, id_expe)
def collect_experiences(self, debug=False):
"""Collects rollouts and computes advantages.
Runs several environments concurrently. The next actions are computed
in a batch mode for all environments at the same time. The rollouts
and advantages from all environments are concatenated together.
Returns
-------
exps : DictList
Contains actions, rewards, advantages etc as attributes.
Each attribute, e.g. `exps.reward` has a shape
(self.num_frames_per_proc * num_envs, ...). k-th block
of consecutive `self.num_frames_per_proc` frames contains
data obtained from the k-th environment. Be careful not to mix
data from different environments!
logs : dict
Useful stats about the training process, including the average
reward, policy loss, value loss, etc.
"""
for i in tqdm(range(self.num_frames_per_proc), ascii=" " * 9 + ">", ncols=100):
# Do one agent-environment interaction
prompt = [self.generate_prompt(goal=self.obs[j]['mission'], subgoals=self.subgoals[j],
deque_obs=self.obs_queue[j], deque_actions=self.acts_queue[j])
for j in range(self.num_procs)]
output = self.lm_server.custom_module_fns(module_function_keys=[self.llm_scoring_module_key, 'value'],
contexts=prompt,
candidates=self.filter_candidates_fn(self.subgoals))
scores = torch.stack([_o[self.llm_scoring_module_key] for _o in output]).squeeze()
dist = Categorical(logits=scores)
values = torch.stack([_o["value"][0] for _o in output])
action = dist.sample()
a = action.cpu().numpy()
for j in range(self.num_procs):
self.acts_queue[j].append(self.subgoals[j][int(a[j])])
if len(self.subgoals[0]) > 6:
# only useful when we test the impact of the number of actions
real_a = np.copy(a)
real_a[real_a > 6] = 6
obs, reward, done, self.infos = self.env.step(real_a)
else:
obs, reward, done, self.infos = self.env.step(a)
for j in range(self.num_procs):
if done[j]:
# reinitialise memory of past observations and actions
self.obs_queue[j].clear()
self.acts_queue[j].clear()
self.obs_queue[j].append(self.infos[j]['descriptions'])
info = self.infos
if self.aux_info:
env_info = self.aux_info_collector.process(env_info)
# env_info = self.process_aux_info(env_info)
if debug:
babyai.utils.viz(self.env)
print(babyai.utils.info(reward, heading="Reward"))
print(babyai.utils.info(info, "Subtasks"))
# Update experiences values
self.obss[i] = self.obs
self.obs = obs
self.prompts[i] = prompt
self.masks[i] = self.mask
self.mask = 1 - torch.tensor(done, device=self.device, dtype=torch.float)
self.actions[i] = action
self.values[i] = values.squeeze()
if self.reshape_reward is not None:
rewards_shaped = torch.tensor([
self.reshape_reward(subgoal_proba=None, reward=reward_, policy_value=None, llm_0=None)
for reward_ in reward
], device=self.device)
self.rewards[i] = rewards_shaped[:, 0]
self.rewards_bonus[i] = rewards_shaped[:, 1]
else:
self.rewards[i] = torch.tensor(reward, device=self.device)
log_prob = dist.log_prob(action)
if len(log_prob.shape) > 1:
log_prob = log_prob.sum(dim=-1)
self.log_probs[i] = log_prob
# Update log values
self.log_episode_return += torch.tensor(reward, device=self.device, dtype=torch.float)
self.log_episode_reshaped_return += self.rewards[i]
self.log_episode_reshaped_return_bonus += self.rewards_bonus[i]
self.log_episode_num_frames += torch.ones(self.num_procs, device=self.device)
for i, done_ in enumerate(done):
if done_:
self.log_done_counter += 1
self.log_return.append(self.log_episode_return[i].item())
self.log_reshaped_return.append(self.log_episode_reshaped_return[i].item())
self.log_reshaped_return_bonus.append(self.log_episode_reshaped_return_bonus[i].item())
self.log_num_frames.append(self.log_episode_num_frames[i].item())
self.log_episode_return *= self.mask
self.log_episode_reshaped_return *= self.mask
self.log_episode_reshaped_return_bonus *= self.mask
self.log_episode_num_frames *= self.mask
# Add advantage and return to experiences
prompt = [self.generate_prompt(goal=self.obs[i]['mission'], subgoals=self.subgoals[i],
deque_obs=self.obs_queue[i], deque_actions=self.acts_queue[i])
for i in range(self.num_procs)]
output = self.lm_server.custom_module_fns(module_function_keys=['value'], contexts=prompt)
next_value = torch.stack([_o["value"] for _o in output]).squeeze()
for i in reversed(range(self.num_frames_per_proc)):
next_mask = self.masks[i + 1] if i < self.num_frames_per_proc - 1 else self.mask
next_value = self.values[i + 1] if i < self.num_frames_per_proc - 1 else next_value
next_advantage = self.advantages[i + 1] if i < self.num_frames_per_proc - 1 else 0
delta = self.rewards[i] + self.discount * next_value * next_mask - self.values[i]
self.advantages[i] = delta + self.discount * self.gae_lambda * next_advantage * next_mask
# Flatten the data correctly, making sure that
# each episode's data is a continuous chunk
exps = DictList()
exps.prompt = np.array([self.prompts[i][j]
for j in range(self.num_procs)
for i in range(self.num_frames_per_proc)])
exps.subgoal = np.array([self.subgoals[j]
for j in range(self.num_procs)
for i in range(self.num_frames_per_proc)])
# In commments below T is self.num_frames_per_proc, P is self.num_procs,
# D is the dimensionality
# for all tensors below, T x P -> P x T -> P * T
exps.action = self.actions.transpose(0, 1).reshape(-1)
exps.value = self.values.transpose(0, 1).reshape(-1)
exps.reward = self.rewards.transpose(0, 1).reshape(-1)
exps.advantage = self.advantages.transpose(0, 1).reshape(-1)
exps.returnn = exps.value + exps.advantage
exps.log_prob = self.log_probs.transpose(0, 1).reshape(-1)
if self.aux_info:
exps = self.aux_info_collector.end_collection(exps)
# Log some values
keep = max(self.log_done_counter, self.num_procs)
log = {
"return_per_episode": self.log_return[-keep:],
"reshaped_return_per_episode": self.log_reshaped_return[-keep:],
"reshaped_return_bonus_per_episode": self.log_reshaped_return_bonus[-keep:],
"num_frames_per_episode": self.log_num_frames[-keep:],
"num_frames": self.num_frames,
"episodes_done": self.log_done_counter,
}
self.log_done_counter = 0
self.log_return = self.log_return[-self.num_procs:]
self.log_reshaped_return = self.log_reshaped_return[-self.num_procs:]
self.log_reshaped_return_bonus = self.log_reshaped_return_bonus[-self.num_procs:]
self.log_num_frames = self.log_num_frames[-self.num_procs:]
return exps, log
def update_parameters(self):
# Collect experiences
exps, logs = self.collect_experiences(debug=self.debug)
# print(exps.action)
# action_counts = exps.action.unique(return_counts=True)
# pi_l_action_counts = exps.pi_l_action.unique(return_counts=True)
'''
exps is a DictList with the following keys ['prompt', 'action', 'value', 'reward',
'advantage', 'returnn', 'log_prob'] and ['collected_info', 'extra_predictions'] if we use aux_info
exps.prompt is a (n_procs * n_frames_per_proc) of prompt
if we use aux_info: exps.collected_info and exps.extra_predictions are DictLists with keys
being the added information. They are either (n_procs * n_frames_per_proc) 1D tensors or
(n_procs * n_frames_per_proc) x k 2D tensors where k is the number of classes for multiclass classification
'''
lm_server_update_first_call = True
# Initialize log values
log_entropies = []
log_policy_losses = []
log_value_losses = []
log_grad_norms = []
log_losses = []
for _ in tqdm(range(self.epochs), ascii=" " * 9 + "<", ncols=100):
# Create minibatch of size self.batch_size*self.nbr_llms
# each llm receive a batch of size batch_size
for inds in self._get_batches_starting_indexes():
# inds is a numpy array of indices that correspond to the beginning of a sub-batch
# there are as many inds as there are batches
exps_batch = exps[inds]
# return the list of dict_return calculate by each llm
list_dict_return = self.lm_server.update(exps_batch.prompt,
self.filter_candidates_fn(exps_batch.subgoal),
exps=dict(exps_batch),
lr=self.lr,
beta1=self.beta1,
beta2=self.beta2,
adam_eps=self.adam_eps,
clip_eps=self.clip_eps,
entropy_coef=self.entropy_coef,
value_loss_coef=self.value_loss_coef,
max_grad_norm=self.max_grad_norm,
nbr_llms=self.nbr_llms,
id_expe=self.id_expe,
lm_server_update_first_call=lm_server_update_first_call,
saving_path_model=self.saving_path_model,
experiment_path=self.experiment_path,
number_updates=self.number_updates,
scoring_module_key=self.llm_scoring_module_key,
template_test=self.template_test)
lm_server_update_first_call = False
log_losses.append(np.mean([d["loss"] for d in list_dict_return]))
log_entropies.append(np.mean([d["entropy"] for d in list_dict_return]))
log_policy_losses.append(np.mean([d["policy_loss"] for d in list_dict_return]))
log_value_losses.append(np.mean([d["value_loss"] for d in list_dict_return]))
log_grad_norms.append(np.mean([d["grad_norm"] for d in list_dict_return]))
# Log some values
logs["entropy"] = np.mean(log_entropies)
logs["policy_loss"] = np.mean(log_policy_losses)
logs["value_loss"] = np.mean(log_value_losses)
logs["grad_norm"] = np.mean(log_grad_norms)
logs["loss"] = np.mean(log_losses)
return logs
def _get_batches_starting_indexes(self):
"""Gives, for each batch, the indexes of the observations given to
the model and the experiences used to compute the loss at first.
Returns
-------
batches_starting_indexes : list of lists of int
the indexes of the experiences to be used at first for each batch
"""
indexes = np.arange(0, self.num_frames)
indexes = np.random.permutation(indexes)
num_indexes = self.batch_size
batches_starting_indexes = [indexes[i:i + num_indexes] for i in range(0, len(indexes), num_indexes)]
return batches_starting_indexes
def generate_trajectories(self, dict_modifier, n_tests, language='english', im_learning=False, debug=False):
"""Generates trajectories and calculates relevant metrics.
Runs several environments concurrently.
Returns
-------
exps : DictList
Contains actions, rewards, advantages etc as attributes.
Each attribute, e.g. `exps.reward` has a shape
(self.num_frames_per_proc * num_envs, ...). k-th block
of consecutive `self.num_frames_per_proc` frames contains
data obtained from the k-th environment. Be careful not to mix
data from different environments!
logs : dict
Useful stats about the training process, including the average
reward, policy loss, value loss, etc.
"""
if language == "english":
generate_prompt = self.generate_prompt
subgoals = self.subgoals
elif language == "french":
generate_prompt = self.generate_prompt_french
subgoals = [[LLMPPOAgent.prompt_modifier(sg, self.dict_translation_action) for sg in sgs] for sgs in self.subgoals]
nbr_frames = self.num_procs
pbar = tqdm(range(n_tests), ascii=" " * 9 + ">", ncols=100)
actions, values, rewards, rewards_bonus = [], [], [], []
while self.log_done_counter < n_tests:
# Do one agent-environment interaction
nbr_frames += self.num_procs
prompt = [self.prompt_modifier(generate_prompt(goal=self.obs[j]['mission'], subgoals=subgoals[j],
deque_obs=self.obs_queue[j],
deque_actions=self.acts_queue[j]), dict_modifier)
for j in range(self.num_procs)]
if im_learning:
output = self.lm_server.custom_module_fns(
module_function_keys=[self.llm_scoring_module_key],
contexts=prompt,
candidates=self.filter_candidates_fn(self.subgoals))
scores = torch.stack([_o[self.llm_scoring_module_key] for _o in output])
else:
output = self.lm_server.custom_module_fns(
module_function_keys=[self.llm_scoring_module_key, 'value'],
contexts=prompt,
candidates=self.filter_candidates_fn(self.subgoals))
scores = torch.stack([_o[self.llm_scoring_module_key] for _o in output])
vals = torch.stack([_o["value"][0] for _o in output]).cpu().numpy()
dist = Categorical(logits=scores)
action = dist.sample()
# action = proba_dist.argmax(dim=1)
a = action.cpu().numpy()
obs, reward, done, self.infos = self.env.step(a)
actions.append([])
values.append([])
for j in range(self.num_procs):
actions[-1].append(subgoals[j][int(a[j])])
self.acts_queue[j].append(subgoals[j][int(a[j])])
if not im_learning:
values[-1].append(vals[j][0])
self.prompts.append(prompt[j])
if done[j]:
# reinitialise memory of past observations and actions
self.obs_queue[j].clear()
self.acts_queue[j].clear()
self.obs_queue[j].append(self.infos[j]['descriptions'])
info = self.infos
if debug:
babyai.utils.viz(self.env)
print(babyai.utils.info(reward, heading="Reward"))
print(babyai.utils.info(info, "Subtasks"))
self.obs = obs
self.mask = 1 - torch.tensor(done, device=self.device, dtype=torch.float)
if self.reshape_reward is not None:
rewards_shaped = torch.tensor([
self.reshape_reward(subgoal_proba=None, reward=reward_, policy_value=None, llm_0=None)
for reward_ in reward
], device=self.device)
rewards.append(rewards_shaped[:, 0])
rewards_bonus.append(rewards_shaped[:, 1])
else:
rewards.append(torch.tensor(reward, device=self.device))
# Update log values
self.log_episode_return += torch.tensor(reward, device=self.device, dtype=torch.float)
self.log_episode_reshaped_return += rewards[-1]
self.log_episode_reshaped_return_bonus += rewards_bonus[-1]
self.log_episode_num_frames += torch.ones(self.num_procs, device=self.device)
for i, done_ in enumerate(done):
if done_:
self.log_done_counter += 1
pbar.update(1)
self.log_return.append(self.log_episode_return[i].item())
if self.log_episode_return[i].item() > 0:
print(self.obs[i]['mission'])
self.log_reshaped_return.append(self.log_episode_reshaped_return[i].item())
self.log_reshaped_return_bonus.append(self.log_episode_reshaped_return_bonus[i].item())
self.log_num_frames.append(self.log_episode_num_frames[i].item())
self.log_episode_return *= self.mask
self.log_episode_reshaped_return *= self.mask
self.log_episode_reshaped_return_bonus *= self.mask
self.log_episode_num_frames *= self.mask
pbar.close()
exps = DictList()
exps.prompts = np.array(self.prompts)
# exps.images = np.stack(self.images)
# In commments below T is self.num_frames_per_proc, P is self.num_procs,
# D is the dimensionality
# for all tensors below, T x P -> P x T -> P * T
exps.actions = np.array(actions)
exps.vals = np.array(vals)
# Log some values
keep = max(self.log_done_counter, self.num_procs)
log = {
"return_per_episode": self.log_return[-keep:],
"reshaped_return_per_episode": self.log_reshaped_return[-keep:],
"reshaped_return_bonus_per_episode": self.log_reshaped_return_bonus[-keep:],
"num_frames_per_episode": self.log_num_frames[-keep:],
"episodes_done": self.log_done_counter,
"nbr_frames": nbr_frames
}
self.log_done_counter = 0
self.log_return = self.log_return[-self.num_procs:]
self.log_reshaped_return = self.log_reshaped_return[-self.num_procs:]
self.log_reshaped_return_bonus = self.log_reshaped_return_bonus[-self.num_procs:]
self.log_num_frames = self.log_num_frames[-self.num_procs:]
return exps, log