-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathrandom_agent.py
43 lines (36 loc) · 1.48 KB
/
random_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import numpy as np
from tqdm import tqdm
from agents.base_agent import BaseAgent
class Random_agent(BaseAgent):
def __init__(self, envs, subgoals):
super().__init__(envs)
self.env.reset()
self.subgoals = subgoals
self.returns = [0 for _ in range(self.env.num_envs)]
self.logs = {
"return_per_episode": [],
}
def generate_trajectories(self, dict_modifier, n_tests, language='english'):
episodes_done = 0
pbar = tqdm(range(n_tests), ascii=" " * 9 + ">", ncols=100)
while episodes_done < n_tests:
actions = np.random.randint(low=0, high=len(self.subgoals[0]), size=(self.env.num_envs,))
if len(self.subgoals[0]) > 6:
# only useful when we test the impact of the number of actions
real_a = np.copy(actions)
real_a[real_a > 6] = 6
obs, rewards, dones, infos = self.env.step(real_a)
else:
obs, rewards, dones, infos = self.env.step(actions)
for j in range(self.env.num_envs):
self.returns[j] += rewards[j]
if dones[j]:
episodes_done += 1
pbar.update(1)
self.logs["return_per_episode"].append(self.returns[j])
self.returns[j] = 0
pbar.close()
self.logs["episodes_done"] = episodes_done
return None, self.logs
def update_parameters(self):
pass