-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_simulation.py
197 lines (153 loc) · 8 KB
/
main_simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import json
import argparse
from pathlib import Path
import networkx as nx
import numpy as np
from tqdm import trange
from llm_culture.simulation.utils import run_simul
# from vllm import LLM, SamplingParams
import os
os.environ['CURL_CA_BUNDLE'] = ''
def parse_arguments():
parser = argparse.ArgumentParser(description='Run a simulation.')
parser.add_argument('-na', '--n_agents', type=int, default=2, help='Number of agents.')
parser.add_argument('-nt', '--n_timesteps', type=int, default=2, help='Number of timesteps.')
# add an optional argument that will select a preset of parameters from parameters_sets in data
# argument to select the network structure
parser.add_argument('-ns', '--network_structure', type=str, default='sequence',
choices=['sequence','fully_connected' 'circle', 'caveman', 'random'], help='Network structure.')
parser.add_argument('-nc', '--n_cliques', type=int, default=2, help='Number of cliques for the Caveman graph')
parser.add_argument('-ne', '--n_edges', type=int, default=2, help='Number of edges for the Random graph')
# argument to select the prompt_init from the list of prompts
parser.add_argument('-pi', '--prompt_init', type=str, default='kid',
help='Initial prompt.')
# argument to select the prompt_update from the list of prompts
parser.add_argument('-pu', '--prompt_update', type=str, default='kid',
help='Update prompt.')
# select a personality from the list of personalities (no choices)
parser.add_argument('-pl', '--personality_list', type=str, default= 'Empty',
help='Personality list.')
# add an option output folder to save the results
parser.add_argument('-o', '--output_dir', type=str, default='Results/default_folder', help='Output folder.')
# create optional argument for the output file name to save in the output folder
parser.add_argument('-of', '--output_file', type=str, default='output.json', help='Output file name.')
parser.add_argument('--debug', action='store_true', help='Enable debug mode.')
parser.add_argument('-url', '--access_url', type=str, default='', help='URL to send the prompt to.')
parser.add_argument('-s', '--n_seeds', type=int, default=2, help='Number of seeds')
parser.add_argument('-f', '--format_prompt', type=str, default='Empty', help='Format of the prompt')
parser.add_argument('-sf', '--start_flag', type=str, default=None, help='Start flag')
parser.add_argument('-ef', '--end_flag', type=str, default=None, help='End flag')
parser.add_argument('-vllm', '--use_vllm', default=True, help='Use VLLM model')
parser.add_argument('-m', '--model', type=str, default='mistralai/Mistral-7B-Instruct-v0.1', help='VLLM model')
parser.add_argument('-is', '--initial_story', type=str, default='Empty', help='Initial story')
parser.add_argument('-t', '--temperature', type=float, default=0.8, help='Temperature for token generation')
return parser.parse_args()
def prepare_simu(args):
pass
def main(args=None):
json_prompt_init = 'llm_culture/data/parameters/prompt_init.json'
json_prompt_update = 'llm_culture/data/parameters/prompt_update.json'
json_structure = 'llm_culture/data/parameters/network_structure.json'
json_personnalities = 'llm_culture/data/parameters/personnalities.json'
json_format = 'llm_culture/data/parameters/format_prompt.json'
json_stories = 'llm_culture/data/parameters/stories.json'
if args is None:
args = parse_arguments()
output_dict = {}
debug = args.debug
sequence = False
# If we use a preset, we can use the parameters_sets in data
# Use the arguments
use_vllm = args.use_vllm
model = args.model
if use_vllm:
try:
from vllm import LLM, SamplingParams
sampling_params = SamplingParams(temperature=0.8, max_tokens=32768)
llm = LLM(model=model,tensor_parallel_size=2, gpu_memory_utilization=0.7, seed=np.random.randint(0,2**31))
except Exception as e:
print("Not using vllm:", str(e))
use_vllm = False
llm = None
sampling_params = None
n_agents = args.n_agents
n_timesteps = args.n_timesteps
network_structure = None
if args.network_structure == 'sequence':
network_structure = nx.DiGraph()
for i in range(n_agents - 1):
network_structure.add_edge(i, i + 1)
sequence = True
elif args.network_structure == 'circle':
network_structure = nx.cycle_graph(n_agents)
elif args.network_structure == 'caveman':
network_structure = nx.connected_caveman_graph(int(args.n_cliques), n_agents // int(args.n_cliques))
elif args.network_structure == 'fully_connected':
network_structure = nx.complete_graph(n_agents)
elif args.network_structure == 'random':
network_structure = nx.dense_gnm_random_graph(n_agents, args.n_edges )
## Adding self-loops:
for i in range(n_agents):
network_structure.add_edge(i, i)
# save adjacency matrix to output_dict
output_dict["adjacency_matrix"] = nx.to_numpy_array(network_structure).tolist()
# prompt_init = prompts.prompt_init_dict[args.prompt_init]
with open(json_prompt_init, 'r') as file:
data = json.load(file)
for d in data:
if d['name'] == args.prompt_init:
prompt_init = d['prompt']
# prompt_update = prompts.prompt_update_dict[args.prompt_update]
with open(json_prompt_update, 'r') as file:
data = json.load(file)
for d in data:
if d['name'] == args.prompt_update:
prompt_update = d['prompt']
with open(json_format, 'r') as file:
data = json.load(file)
for d in data:
if d['name'] == args.format_prompt:
format_prompt = d['prompt']
with open(json_stories, 'r') as file:
data = json.load(file)
for d in data:
if d['name'] == args.initial_story:
initial_story = d['prompt']
# personality_dict = getattr(prompts, args.personality_dict)
# personality_list = prompts.personality_dict_of_lists[args.personality_list]
if args.personality_list == 'Empty':
personality_list = [''] * n_agents
else:
personality_list = []
with open(json_personnalities, 'r') as file:
data = json.load(file)
for perso in args.personality_list:
for d in data:
if d['name'] == perso:
personality_list.append(d['prompt'])
output_dict["prompt_init"] = [prompt_init]
output_dict["prompt_update"] = [prompt_update]
output_dict["personality_list"] = personality_list
output_dict["format_prompt"] = [format_prompt]
output_dict["initial_story"] = initial_story
os.makedirs(os.path.dirname(str(args.output_dir) + '/'), exist_ok=True)
# t = input(args.output)
for i in trange(args.n_seeds):
stories = run_simul(args.access_url, n_timesteps, network_structure, prompt_init,
prompt_update, initial_story, personality_list, n_agents, format_prompt=format_prompt,
start_flag=args.start_flag, end_flag=args.end_flag,
sequence=sequence, output_folder=args.output_dir,
debug=debug, use_vllm=use_vllm, model=llm, sampling_params=sampling_params, temperature=args.temperature)
output_dict["stories"] = stories
# Save the output to a file
if args.output_dir:
with open(Path(args.output_dir, 'output'+str(i)+'.json'), "w") as f:
json.dump(output_dict, f, indent=4)
else:
with open(Path("Results/", 'output'+str(i)+'.json'), "w") as f:
json.dump(output_dict, f, indent=4)
return output_dict
# get_all_figures(stories, folder_name)
if __name__ == "__main__":
main()