This repository has been archived by the owner on Sep 24, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathtrain.py
148 lines (131 loc) · 5.98 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import tensorflow as tf
import tflearn
import numpy as np
import re
from model import SelfAttentive
from sklearn.utils import shuffle
from reader import load_csv, VocabDict
'''
parse
'''
tf.app.flags.DEFINE_integer('num_epochs', 5, 'number of epochs to train')
tf.app.flags.DEFINE_integer('batch_size', 20, 'batch size to train in one step')
tf.app.flags.DEFINE_integer('labels', 5, 'number of label classes')
tf.app.flags.DEFINE_integer('word_pad_length', 60, 'word pad length for training')
tf.app.flags.DEFINE_integer('decay_step', 500, 'decay steps')
tf.app.flags.DEFINE_float('learn_rate', 1e-2, 'learn rate for training optimization')
tf.app.flags.DEFINE_boolean('shuffle', True, 'shuffle data FLAG')
tf.app.flags.DEFINE_boolean('train', True, 'train mode FLAG')
tf.app.flags.DEFINE_boolean('visualize', False, 'visualize FLAG')
tf.app.flags.DEFINE_boolean('penalization', True, 'penalization FLAG')
FLAGS = tf.app.flags.FLAGS
num_epochs = FLAGS.num_epochs
batch_size = FLAGS.batch_size
tag_size = FLAGS.labels
word_pad_length = FLAGS.word_pad_length
lr = FLAGS.learn_rate
TOKENIZER_RE = re.compile(r"[A-Z]{2,}(?![a-z])|[A-Z][a-z]+(?=[A-Z])|[\'\w\-]+", re.UNICODE)
def token_parse(iterator):
for value in iterator:
return TOKENIZER_RE.findall(value)
tokenizer = tflearn.data_utils.VocabularyProcessor(word_pad_length, tokenizer_fn=lambda tokens: [token_parse(x) for x in tokens])
label_dict = VocabDict()
def string_parser(arr, fit):
if fit == False:
return list(tokenizer.transform(arr))
else:
return list(tokenizer.fit_transform(arr))
model = SelfAttentive()
with tf.Session() as sess:
# build graph
model.build_graph(n=word_pad_length)
# Downstream Application
with tf.variable_scope('DownstreamApplication'):
global_step = tf.Variable(0, trainable=False, name='global_step')
learn_rate = tf.train.exponential_decay(lr, global_step, FLAGS.decay_step, 0.95, staircase=True)
labels = tf.placeholder('float32', shape=[None, tag_size])
net = tflearn.fully_connected(model.M, 2000, activation='relu')
logits = tflearn.fully_connected(net, tag_size, activation=None)
loss = tf.reduce_sum(tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits), axis=1)
if FLAGS.penalization == True:
p_coef = 0.004
p_loss = p_coef * model.P
loss = loss + p_loss
p_loss = tf.reduce_mean(p_loss)
loss = tf.reduce_mean(loss)
params = tf.trainable_variables()
#clipped_gradients = [tf.clip_by_value(x, -0.5, 0.5) for x in gradients]
optimizer = tf.train.AdamOptimizer(learn_rate)
grad_and_vars = tf.gradients(loss, params)
clipped_gradients, _ = tf.clip_by_global_norm(grad_and_vars, 0.5)
opt = optimizer.apply_gradients(zip(clipped_gradients, params), global_step=global_step)
# Start Training
sess.run(tf.global_variables_initializer())
words, tags = load_csv('./data/ag_news_csv/train.csv', target_columns=[0], columns_to_ignore=[1], target_dict=label_dict)
words = string_parser(words, fit=True)
if FLAGS.shuffle == True:
words, tags = shuffle(words, tags)
word_input = tflearn.data_utils.pad_sequences(words, maxlen=word_pad_length)
total = len(word_input)
step_print = int((total/batch_size) / 13)
if FLAGS.train == True:
print('start training')
for epoch_num in range(num_epochs):
epoch_loss = 0
step_loss = 0
for i in range(int(total/batch_size)):
batch_input, batch_tags = (word_input[i*batch_size:(i+1)*batch_size], tags[i*batch_size:(i+1)*batch_size])
train_ops = [opt, loss, learn_rate, global_step]
if FLAGS.penalization == True:
train_ops += [p_loss]
result = sess.run(train_ops, feed_dict={model.input_pl: batch_input, labels: batch_tags})
step_loss += result[1]
epoch_loss += result[1]
if i % step_print == (step_print-step_print):
if FLAGS.penalization == True:
print(f'step_log: (epoch: {epoch_num}, step: {i}, global_step: {result[3]}, learn_rate: {result[2]}), Loss: {step_loss/step_print}, Penalization: {result[4]})')
else:
print(f'step_log: (epoch: {epoch_num}, step: {i}, global_step: {result[3]}, learn_rate: {result[2]}), Loss: {step_loss/step_print})')
#print(f'{result[4]}')
step_loss = 0
print('***')
print(f'epoch {epoch_num}: (global_step: {result[3]}), Average Loss: {epoch_loss/(total/batch_size)})')
print('***\n')
saver = tf.train.Saver()
saver.save(sess, './model.ckpt')
else:
saver = tf.train.Saver()
saver.restore(sess, './model.ckpt')
words, tags = load_csv('./data/ag_news_csv/test.csv', target_columns=[0], columns_to_ignore=[1], target_dict=label_dict)
words_with_index = string_parser(words, fit=True)
word_input = tflearn.data_utils.pad_sequences(words_with_index, maxlen=word_pad_length)
total = len(word_input)
rs = 0.
if FLAGS.visualize == True:
f = open('visualize.html', 'w')
f.write('<html style="margin:0;padding:0;"><body style="margin:0;padding:0;">\n')
for i in range(int(total/batch_size)):
batch_input, batch_tags = (word_input[i*batch_size:(i+1)*batch_size], tags[i*batch_size:(i+1)*batch_size])
result = sess.run([logits, model.A], feed_dict={model.input_pl: batch_input, labels: batch_tags})
arr = result[0]
for j in range(len(batch_tags)):
rs+=np.sum(np.argmax(arr[j]) == np.argmax(batch_tags[j]))
if FLAGS.visualize == True:
f.write('<div style="margin:25px;">\n')
for k in range(len(result[1][0])):
f.write('<p style="margin:10px;">\n')
ww = TOKENIZER_RE.findall(words[i*batch_size][0])
for j in range(word_pad_length):
alpha = "{:.2f}".format(result[1][0][k][j])
if len(ww) <= j:
w = "___"
else:
w = ww[j]
f.write(f'\t<span style="margin-left:3px;background-color:rgba(255,0,0,{alpha})">{w}</span>\n')
f.write('</p>\n')
f.write('</div>\n')
if FLAGS.visualize == True:
f.write('</body></html>')
f.close()
print(f'Test accuracy: {rs/total}')
sess.close()