-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdimer_vertical.py
746 lines (686 loc) · 27.3 KB
/
dimer_vertical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @File : dimer_vertical.py
# @Author: Fly_dragon
# @Date : 2020/1/29
# @Desc :
"""
本改动是建立于dimer在超球面上旋转
"""
import numpy as np
import pandas as pd
from simplesurface import SimpleSurface
import matplotlib.pyplot as plt
import random
import time
class Dimer:
def __init__(self, PES=SimpleSurface(), n=2, ini_position=None,
ini_vector=None, ini_velocity=None,
whether_print=False):
# 是否打印中间数据
self.whether_print = whether_print
# 旋转力收敛值
self.min_vertical_force = 1e-5
self.min_value = 1e-20
self.PES = PES
self.n = n
self.r = 0.005 # 半径
self.vector = np.zeros(n, 'f')
self.normal = np.zeros(n, 'f')
self.position = np.zeros(n, 'f')
self.position_pre = np.zeros(n, 'f')
self.f1 = np.zeros(n, 'f')
self.f_r = np.zeros(n, 'f') # the force of midpoint
self.f_r_pre = np.zeros(n, 'f')
self.f2 = np.zeros(n, 'f')
self.f_vertical = np.zeros(n, 'f') # 旋转力
self.v = np.zeros(n, 'f') # dimer初速度
# 更新预设
self.vector[:] = ini_vector if ini_vector is not None else np.random.rand(n) - 0.5
self.position[:] = ini_position if ini_position is not None else np.random.rand(n)
self.v[:] = ini_velocity if ini_velocity is not None else self.vector
# 向量归一化
# 这里用=/会报错
self.vector = self.vector / np.linalg.norm(self.vector)
# 曲率
self.c = 0
self.delta_angle = np.pi / 180
self.timer = 0.05 # dimer步进时间
self.timer_max = 0.2
self.translate_situation = [0, 0, 0, 0] # 各种移动情况计算次数
self.bk = np.eye(n) # Hessian矩阵近似
self.angle = 0
self.position_list = []
def get_value(self, position):
"""
获取值
"""
return self.PES.get_value(position)
def force(self, position):
"""
计算像点受力,一阶梯度,这里使用移动self.delta找梯度
"""
# value = self.get_value(position)
# delta_array = np.zeros(self.n, 'f')
# force_array = np.zeros(self.n, 'f')
# for i in range(self.n):
# delta_array[:] = 0
# delta_array[i] = self.delta
# new_position = position + delta_array
# new_value = self.get_value(new_position)
# # 负梯度为受力方向
# force_array[i] = (value-new_value) / self.delta
# return force_array
return self.PES.get_diff(position)
def vertical_force(self, force, vector):
"""
计算垂直分力(旋转力)
参数:
force:力向量
vector:dimer向量
"""
# 平行分力
f_parallel = np.dot(vector, force) * vector
# 垂直分力
f_vertical = force - f_parallel
return f_vertical
def get_rotate_angle(self):
"""
计算dimer的旋转角
"""
self._update_normal()
# 旋转力
delta_f = self.f_vertical
f_abs = np.linalg.norm(delta_f)
if f_abs < self.min_value:
return 0
# 垂直向量判断
if np.isnan(self.normal[0]):
return 0
# 这里是单位向量
new_vector = self.vector * np.cos(self.delta_angle) + self.normal * np.sin(self.delta_angle)
# 微旋转后的dimer受力
new_f1 = self.force(self.position + new_vector * self.r)
new_f2 = 2 * self.f_r - new_f1
delta_new_f = (new_f1 - new_f2) - np.dot(new_f1 - new_f2, new_vector) * new_vector
temp = f_abs * np.cos(2 * self.delta_angle) - np.dot(delta_new_f, delta_f) / f_abs
angle = np.arctan((np.sin(2 * self.delta_angle) * f_abs) / temp) / 2
return angle
def get_rotate_angle_v2(self):
"""
计算dimer的旋转角
"""
self._update_f()
delta_f = (self.f1 - self.f2) - np.dot(np.dot(self.f1 - self.f2, self.vector), self.vector)
# 力大小
f_abs = np.linalg.norm(delta_f)
if f_abs < self.min_value:
return 0
# 垂直向量判断
self._update_normal()
if np.isnan(self.normal[0]):
return 0
# 这里是单位向量
new_vector = self.vector * np.cos(self.delta_angle) + self.normal * np.sin(self.delta_angle)
# 微旋转后的dimer受力
new_f1 = self.force(self.position + new_vector * self.r)
new_f2 = 2 * self.f_r - new_f1
delta_new_f = (new_f1 - new_f2) - np.dot(np.dot(new_f1 - new_f2, new_vector), new_vector)
new_f_abs = np.linalg.norm(delta_new_f)
if new_f_abs < self.min_value:
return self.delta_angle
f_d = (f_abs - new_f_abs) / self.delta_angle
angle = (f_abs + new_f_abs) / (-2 * f_d)
return angle
def rotate(self, angle):
"""
旋转dimer
"""
self.angle = angle
# 垂直向量
if np.isnan(self.normal[0]):
return
new_vector = self.vector * np.cos(self.angle) + self.normal * np.sin(self.angle)
self.vector[:] = new_vector / np.linalg.norm(new_vector)
# 更新受力
self._update_f()
# 计算曲率
self._update_c()
def translate(self, method=0):
if method == 0:
return self._translate_v0()
elif method == 1:
return self._translate_v1()
elif method == 2:
return self._translate_v2()
else:
input('Find no translate method! ')
def work_list(self, cal_method=0):
self._update_all()
# 旋转到曲率最小
f_r_list = []
f_parallel_list = []
c_list = []
rotate_times = []
for i in range(120):
pre_c = self.c
for j in range(20):
if self.whether_print:
print('rotated force: ', np.linalg.norm(self.f_vertical))
# 垂直力大小
if np.linalg.norm(self.vertical_force(self.f1 - self.f2, self.vector)) < self.min_vertical_force and j>0:
if self.c > pre_c and self.c > 0: # 如果曲率上升,旋转pi/2 + angle, 重要
self.rotate(np.pi / 2)
continue
break
rotate_angle = self.get_rotate_angle()
self.rotate(rotate_angle)
self.translate(cal_method)
# 画出端点位置
plt.plot(self.position[0], self.position[1], 'ro')
x1 = self.position + self.vector * self.r * 8
x2 = self.position - self.vector * self.r * 8
plt.plot(x1[0], x1[1], 'bo') # 画出点1位置
plt.plot(x2[0], x2[1], 'bo') # 画出点1位置
plt.show()
f_r_list.append(np.linalg.norm(self.f_r))
f_parallel_list.append(np.linalg.norm(np.dot(self.vector, self.f_r) * self.vector, ord=1))
c_list.append(self.c)
self.position_list.append(self.position.copy())
if (np.abs(self.f_r) < 0.1).all(): # 所有方向都相反
if self.c < 0.0:
break
if self.whether_print:
print('time', rotate_times)
# print(self.position/np.pi*180)
return np.array(self.position_list), rotate_times, f_r_list, f_parallel_list, c_list
def _translate_v0(self):
"""
移动dimer, 梯度下降法
"""
self.angle = 0
# dimer合力
f_r = self.f_r
# dimer平行力
f_parallel = np.dot(self.vector, f_r) * self.vector
# dimer指向鞍点力
if self.c < 0:
f_to_saddle = f_r - f_parallel * 2 # 平行力反向
else:
f_to_saddle = - f_parallel
self.v = f_to_saddle
self.position += (self.v * self.timer)
# 计算新点相关数据
self._update_f()
def _translate_v1(self):
"""
移动dimer, 加速梯度下降法?
"""
self.angle = 0
# dimer合力
f_r = self.f_r
# dimer平行力
f_parallel = np.dot(self.vector, f_r) * self.vector
# dimer指向鞍点力
if self.c < 0:
self.translate_situation[0] += 1
f_to_saddle = f_r - f_parallel * 2 # 平行力反向
else:
self.translate_situation[1] += 1
f_to_saddle = - f_parallel
# f_to_saddle = f_r - f_parallel * 2 这样会增加旋转,减少移动
delta_v = f_to_saddle
# 速度调整
if np.dot(self.v, f_to_saddle) < 0:
self.v = delta_v
else:
delta_v_abs = np.dot(delta_v, delta_v)
if delta_v_abs < self.min_value:
self.v[:] = 0
else:
self.v = delta_v * (1 + np.dot(delta_v, self.v) / np.dot(delta_v, delta_v))
self.position += (self.v * self.timer)
# 计算新点相关数据
self._update_f()
def _translate_v2(self):
"""
移动dimer, 线性探测法
"""
self.angle = 0
# dimer合力
f_r = self.f_r
# dimer平行力
f_parallel = np.dot(self.vector, f_r) * self.vector
# dimer指向鞍点力
timer_m = 1 # self.timer的倍数
if self.c < 0:
f_to_saddle = f_r - f_parallel * 2 # 平行力反向
self.v = f_to_saddle
f_r_next = self.force(self.position + f_to_saddle * self.timer)
if np.linalg.norm(f_r_next) > np.linalg.norm(self.f_r):
self.translate_situation[0] += 1
# 后面是极值,需要跳出
timer_m = self.__get_m_translate_jump(f_to_saddle)
elif (np.abs(self.f_r) < 0.16).all():
self.translate_situation[1] += 1
# 鞍点附近, 一维线性搜索,步长调整
m = 1
force_list = []
force_list.append(self.f_r.copy())
force_list.append(f_r_next)
while m <= 10:
if (np.abs(force_list[-1]) < 0.1).all():
break
f_r_next = self.force(self.position + f_to_saddle * self.timer * (m+1+m/2))
force_list.append(f_r_next.copy())
if np.linalg.norm(force_list[-1]) > np.linalg.norm(force_list[-2]):
force_list.pop()
m -= 2
break
m += 1+m/2
self.f_r = force_list[-1]
timer_m = m
else:
self.translate_situation[2] += 1
# 一维搜索跳出
timer_m = self.__get_m_translate_jump(f_to_saddle)
if timer_m == 1: # 可以减少一次梯度计算
self.f_r = f_r_next
else:
# 曲率大于0,受力较大,加速向前
self.translate_situation[3] += 1
f_to_saddle = - f_parallel
if np.dot(self.v, f_to_saddle) < 0:
self.v = f_to_saddle
else:
delta_v_abs = np.dot(f_to_saddle, f_to_saddle)
self.v = f_to_saddle * (1 + np.dot(f_to_saddle, self.v) / delta_v_abs)
self.position += (self.v * self.timer * timer_m)
# 计算新点相关数据
self._update_f()
return
def __get_m_translate_jump(self, f_to_saddle, delta_m=2):
"""
跳出极值区域,返回步进时间的倍数
"""
value_list = [self.get_value(self.position),
self.get_value(self.position + f_to_saddle * self.timer)]
m = 1
while m < 13:
value_1 = self.get_value(self.position + f_to_saddle * self.timer * (m+delta_m))
if (value_list[1] - value_list[0]) * (value_1 - value_list[-1]) <= 0:
break
value_list.append(value_1)
m += delta_m
return m
def _update_c(self):
"""
计算曲率
"""
self.c = -np.dot(self.f1 - self.f2, self.vector) / self.r / 2
if self.whether_print:
print('curvature: ', self.c)
def _update_normal(self):
"""
计算法向量
"""
normal = self.vertical_force(self.f1 - self.f2, self.vector)
normal_abs = np.linalg.norm(normal)
if normal_abs < self.min_value:
# 如果垂直力为0,中断计算垂直向量
self.normal[:] = np.float('nan')
# self.normal[:] = 0
else:
self.normal[:] = normal / normal_abs
# 旋转力
self.f_vertical = self.f1 - self.f2 - np.dot(np.dot(self.f1 - self.f2, self.vector), self.vector)
return
def _update_f(self):
"""
更新受力,利用像点是否移动进行效率优化
"""
if (self.position == self.position_pre).all(): # 没有移动
self.f1[:] = self.force(self.position + self.vector * self.r)
self.f2[:] = 2 * self.f_r - self.f1
else:
self.f1[:] = self.force(self.position + self.vector * self.r)
if (self.f_r == self.f_r_pre).all(): # 没有更新f_r
self.f_r[:] = self.force(self.position)
self.f_r_pre[:] = self.f_r[:]
self.f2[:] = 2 * self.f_r - self.f1
self.position_pre[:] = self.position[:]
return
def _update_all(self):
self._update_f() # 更新受力
self._update_normal()
self._update_c()
class DimerRo(Dimer):
"""
对旋转行为进行优化,计算\phi_1进行旋转,并优化收敛条件
"""
def get_rotate_angle(self):
"""
计算dimer的旋转角
"""
self._update_normal()
# 旋转力
delta_f = self.f_vertical
f_abs = np.linalg.norm(delta_f)
if f_abs < self.min_value:
return 0
# 垂直向量判断
if np.isnan(self.normal[0]):
return 0
theta_f = delta_f / f_abs
# 计算\phi_1
c_new = -np.dot(self.f1 - self.f_r, self.vector) / self.r
partial_c = 2 * np.dot(self.f1 - self.f_r, theta_f) / self.r
angle_1 = 0.5 * np.arctan(partial_c / np.abs(c_new) / 2)
# 这里是单位向量
new_vector = self.vector * np.cos(angle_1) + self.normal * np.sin(angle_1)
# 微旋转后的dimer受力
new_f1 = self.force(self.position + new_vector * self.r)
new_f2 = 2 * self.f_r - new_f1
delta_new_f = (new_f1 - new_f2) - np.dot(new_f1 - new_f2, new_vector) * new_vector
temp = f_abs * np.cos(2 * angle_1) - np.dot(delta_new_f, delta_f) / f_abs
angle = np.arctan((np.sin(2 * angle_1) * f_abs) / temp) / 2
# c_angle = -np.dot(new_f1 - self.f_r, new_vector) / self.r # 旋转后曲率
return angle
def work(self):
self._update_all()
# 旋转到曲率最小
times = []
for i in range(1200):
pre_c = self.c
for j in range(20):
rotate_angle = self.get_rotate_angle()
self.rotate(rotate_angle)
if pre_c < self.c and self.c > 0:
self.rotate(np.pi / 2)
print('rotate_angle', rotate_angle * 180 / np.pi,
'pre_c: %f, c: %f' % (pre_c, self.c))
# 旋转角度小于某个值
if np.abs(rotate_angle) < np.pi / 180 * 1:
break
self.translate_v3()
# 画出端点位置
x1 = self.position + self.vector * self.r * 3
plt.plot(x1[0], x1[1], 'bo') # 画出点1位置
times.append(j)
if self.whether_print:
print('parallel force', np.dot(self.vector, self.f_r) * self.vector, '\n')
self.position_list.append(self.position.copy())
if (np.abs(self.f_r) < 0.1).all(): # 所有方向都相反
if self.c < 0.0:
break
if self.whether_print:
print('time', times)
return np.array(self.position_list), times
def work2(self):
self._update_all()
# 旋转到曲率最小
times = []
for i in range(1200):
for j in range(20):
rotate_angle = self.get_rotate_angle()
pre_c = self.c
self.rotate(rotate_angle)
if pre_c < self.c and self.c > 0:
self.rotate(np.pi / 2)
print('rotate_angle', rotate_angle * 180 / np.pi,
'pre_c: %f, c: %f' % (pre_c, self.c))
# 垂直力大小
if np.linalg.norm(self.vertical_force(self.f1 - self.f2, self.vector)) < self.min_vertical_force:
break
self._translate_v1()
print('end\n')
plt.plot(self.position[0], self.position[1], 'ro')
x1 = self.position + self.vector * self.r
plt.plot(x1[0], x1[1], 'ko') # 画出点1位置
plt.show()
times.append(j)
if self.whether_print:
print('parallel force', np.dot(self.vector, self.f_r) * self.vector, '\n')
self.position_list.append(self.position.copy())
if (np.abs(self.f_r) < 0.1).all(): # 所有方向都相反
if self.c < 0.0:
break
# print(self.position/np.pi*180)
# self.PES.show_point_2d(np.array(self.position_list))
# self.PES.show_surface_2d(-5, 5)
# plt.title('It rotates %d times and run %d times' % (sum(times), len(times)))
# self.PES.show()
return np.array(self.position_list), times
class DimerQs(Dimer):
"""
使用BFGS方法更新步长,在旋转时更新Bk
"""
def rotate(self, angle):
"""
旋转dimer
"""
self.angle = angle
# 垂直向量
if np.isnan(self.normal[0]):
return
# 准备更新Bk
position_pre = (self.position + self.vector * self.r).copy()
force_pre = self.f1.copy()
# 旋转
new_vector = self.vector * np.cos(self.angle) + self.normal * np.sin(self.angle)
self.vector[:] = new_vector / np.linalg.norm(new_vector)
# 更新受力
self._update_f()
# 计算曲率
self._update_c()
# 更新bk
if np.abs(angle) > np.pi / 2.5: # 旋转太大,self.bk不更新
return
position_now = self.position + self.vector * self.r
self._update_bk(position_pre, force_pre, position_now, self.f1.copy())
def translate(self, method=0):
if method == 0:
return self._translate_v0()
elif method == 1:
return self._translate_v1()
elif method == 2:
return self._translate_v2()
elif method == 3:
return self._translate_v3()
else:
input('Find no translate method! ')
def _translate_v3(self):
"""
移动dimer, BFGS法
"""
self.angle = 0
# dimer合力
f_r = self.f_r
# dimer平行力
f_parallel = np.dot(self.vector, f_r) * self.vector
# dimer指向鞍点力
if self.c < 0:
f_to_saddle = f_r - f_parallel * 2 # 平行力反向
else:
f_to_saddle = - f_parallel
delta_v = f_to_saddle
position_pre = self.position.copy()
force_pre = self.f_r.copy()
translate_timer = np.linalg.norm(self.bk.dot(self.f_r.reshape((-1, 1))).flatten())
f_bk = -self.bk.dot(self.f_r).flatten() # 拟牛顿指向力
if translate_timer > self.timer_max:
translate_timer = self.timer_max
if self.timer < translate_timer and \
self.translate_situation[1] >= 1:
self.position += translate_timer * delta_v
self.translate_situation[0] += 1
else:
self.translate_situation[1] += 1
if np.dot(self.v, delta_v) > 0:
self.v = delta_v * (1 + np.dot(delta_v, self.v) / np.dot(delta_v, delta_v))
else:
self.v = delta_v
self.position += self.v * self.timer
# 计算新点相关数据
self._update_f()
self._update_bk(position_pre, force_pre, self.position.copy(), self.f_r.copy())
def _translate_v31(self):
"""
移动dimer, 未优化BFGS法
"""
self.angle = 0
# dimer合力
f_r = self.f_r
# dimer平行力
f_parallel = np.dot(self.vector, f_r) * self.vector
# dimer指向鞍点力
if self.c < 0:
f_to_saddle = f_r - f_parallel * 2 # 平行力反向
else:
f_to_saddle = - f_parallel
delta_v = f_to_saddle
position_pre = self.position.copy()
force_pre = self.f_r.copy()
translate_length = np.linalg.norm(self.bk.dot(self.f_r.reshape((-1, 1))).flatten())
f_bk = -self.bk.dot(self.f_r).flatten() # 拟牛顿指向力
if self.translate_situation[1] >= 1:
self.position += translate_length * delta_v / np.linalg.norm(delta_v)
self.translate_situation[0] += 1
else:
self.translate_situation[1] += 1
self.v = delta_v
self.position += self.v * self.timer
# 计算新点相关数据
self._update_f()
self._update_bk(position_pre, force_pre, self.position.copy(), self.f_r.copy())
def work(self, cal_method=0):
self._update_all()
self.position_list.append(self.position.copy())
# 旋转到曲率最小
rotate_times = []
for i in range(120):
pre_c = self.c
for j in range(0, 20):
if self.whether_print:
print('rotated force: ', np.linalg.norm(self.f_vertical))
# 垂直力大小
if np.linalg.norm(self.vertical_force(self.f1 - self.f2, self.vector)) < self.min_vertical_force:
if self.c > pre_c and self.c > 0: # 如果曲率上升,旋转pi/2 + angle, 重要
self.rotate(np.pi / 2)
continue
break
rotate_angle = self.get_rotate_angle()
self.rotate(rotate_angle)
# 画出端点位置
x1 = self.position + self.vector * self.r * 3
x2 = self.position - self.vector * self.r * 3
plt.plot(x1[0], x1[1], 'bo') # 画出点1位置
plt.plot(x2[0], x2[1], 'bo') # 画出点1位置
plt.plot(self.position[0], self.position[1], 'ro')
plt.show()
# 移动dimer
self.translate(cal_method)
rotate_times.append(j)
# print('The difference between B and H', np.sum(np.abs(self.bk - self.PES.get_hess(self.position))))
print('Bk: ', self.bk)
self.position_list.append(self.position.copy())
if (np.abs(self.f_r) < 0.1).all(): # 所有方向都相反
if self.c < 0.0:
break
if self.whether_print:
print('time', rotate_times)
# print(self.position/np.pi*180)
return np.array(self.position_list), rotate_times
def _update_bk(self, position_previous, force_previous, position_now, force_now):
"""
BFGS更新Hessian矩阵
"""
x0 = position_previous
x1 = position_now
f0 = force_previous
f1 = force_now
if (np.abs(x1 - x0) < self.min_value).all():
return
# BFGS校正
delta_x = (x1 - x0).reshape((-1, 1))
delta_f = (f1 - f0).reshape((-1, 1))
# if delta_g.T.dot(delta_x) > 0: # 如果该方向梯度增加,则更新拟Hessian矩阵B
self.bk = (np.eye(self.n) - delta_x.dot(delta_f.T) /
delta_f.T.dot(delta_x)).dot(self.bk).dot(np.eye(self.n) -
delta_f.dot(delta_x.T) / delta_f.T.dot(delta_x)) + \
delta_x.dot(delta_x.T) / delta_f.T.dot(delta_x)
def atest_1():
# 随机选取位置测试
np.random.seed(10)
for i in range(1, 5):
plt.figure(i)
ini_position = (np.random.rand(2) - 0.5)
# ini_position = np.array([0.042, 0.4])
angle = np.pi / 180 * 3
ini_vector = [np.cos(angle), np.sin(angle)]
PES = SimpleSurface()
d = DimerQs(PES, 2, ini_position, ini_vector, whether_print=True)
d.PES.show_surface_2d(-0.5, 0.5)
# d.PES.show_surface_2d(-5, 5)
position_d, times_d = d.work(2) # 得到dimer运行轨迹和每一次的旋转数
d.PES.show_point_2d(position_d)
# plt.title('Dimer rotates %d times and run %d times \n '
# % (sum(times_d), len(times_d)) + str(d.translate_situation))
plt.title('Dimer rotates %d times and run %d times \n '
% (sum(times_d), len(times_d)))
print('\n')
x1 = d.position + d.vector * d.r
plt.plot(x1[0], x1[1], 'ko') # 画出点1位置
def atest_extreme1():
# 非周期函数极端情况(极大极小)测试
np.random.seed(10)
ini_position = [-0.01, 0.36]
angle = np.pi / 180 * 30
ini_vector = [np.cos(angle), np.sin(angle)]
PES = SimpleSurface()
d = DimerQs(PES, 2, ini_position, ini_vector, whether_print=True)
d.PES.show_surface_2d(-0.5, 0.5)
# d.PES.show_surface_2d(-5, 5)
position_d, times_d = d.work(1) # 得到dimer运行轨迹和每一次的旋转数
d.PES.show_point_2d(position_d)
plt.title('Dimer rotates %d times and run %d times \n '
% (sum(times_d), len(times_d)))
print('\n')
x1 = d.position + d.vector * d.r
def atest_extreme():
# 周期函数极端情况(极大极小)测试
np.random.seed(7)
ini_position1 = np.array([[-4.3, 1.6], [-np.pi / 2 * 1.1, -np.pi / 2]], 'f')
for i in range(1, 3):
plt.figure(2 * i)
ini_position = ini_position1[i - 1]
ini_vector = np.random.rand(2)
PES = SimpleSurface()
d = DimerQs(PES, 2, ini_position, ini_vector, whether_print=True)
position_d, times_d, f_r_list, f_parallel_list, c_list = d.work_list(1) # 得到dimer运行轨迹和每一次的旋转数
d.PES.show_point_2d(position_d)
d.PES.show_surface_2d(-5, 5)
plt.title('Dimer rotates %d times and run %d times \n '
% (sum(times_d), len(times_d)))
x1 = d.position + d.vector * d.r
plt.figure(2 * i + 1)
plt.plot(f_r_list)
plt.title('The relation between |g0| and iterations')
# plt.figure(2 * i + 2)
# plt.plot(f_parallel_list)
# plt.figure(2 * i + 3)
# plt.plot(f_r_list)
def data_to_excel(data_in):
# prepare for data
data = np.array(data_in)
data_df = pd.DataFrame(data)
# change the index and column name
data_df.columns = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J']
data_df.index = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
# create and writer pd.DataFrame to excel
writer = pd.ExcelWriter('Save_Excel.xlsx')
data_df.to_excel(writer, 'page_2', float_format='%d') # float_format 控制精度
writer.save() # 如果有同名文件,该操作会覆盖原文件
if __name__ == "__main__":
# atest_extreme1()
atest_1()