-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
188 lines (168 loc) · 7.76 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os, dataclasses, numcodecs, abc, time, dask
from aicsimageio import AICSImage
from aicsimageio.metadata.utils import OME
import numpy as np, cupy as cp
from pathlib import Path
import zarr
from typing import (Union, Iterable)
import warnings
import itertools
from pathlib import Path
import glob, zarr
from typing import Callable, Any
from collections import defaultdict
import dask.array as da
def deconvolve_block(img, psf=None, iterations=20):
# Pad PSF with zeros to match image shape
pad_l, pad_r = np.divmod(np.array(img.shape) - np.array(psf.shape), 2)
pad_r += pad_l
psf = np.pad(psf, tuple(zip(pad_l, pad_r)), 'constant', constant_values=0)
# Recenter PSF at the origin
# Needed to ensure PSF doesn't introduce an offset when
# convolving with image
for i in range(psf.ndim):
psf = np.roll(psf, psf.shape[i] // 2, axis=i)
# Convolution requires FFT of the PSF
psf = np.fft.rfftn(psf)
# Perform deconvolution in-place on a copy of the image
# (avoids changing the original)
img_decon = np.copy(img)
for _ in range(iterations):
ratio = img / np.fft.irfftn(np.fft.rfftn(img_decon) * psf)
img_decon *= np.fft.irfftn((np.fft.rfftn(ratio).conj() * psf).conj())
return img_decon
def gaussian_psf(shape, mean, cov):
"""
Computes an n-dimensional Gaussian function over a grid defined by the given shape.
Parameters:
shape (tuple of int): Shape of the n-dimensional grid (e.g., (height, width, depth)).
mean (float or list-like): Scalar or array-like representing the mean of the Gaussian.
If scalar, it will be applied to all dimensions.
cov (float or list-like): Scalar, 1D array, or 2D array representing the covariance.
- If scalar, creates an isotropic Gaussian.
- If 1D, creates a diagonal covariance matrix.
- If 2D, used directly as the covariance matrix.
Returns:
np.ndarray: An n-dimensional array containing the Gaussian function values.
"""
n = len(shape)
if np.isscalar(mean):
mean = np.full(n, mean)
else:
mean = np.asarray(mean)
if mean.shape[0] != n:
raise ValueError(f"Mean must match the number of dimensions ({n}).")
if np.isscalar(cov):
cov = np.eye(n) * cov
elif np.ndim(cov) == 1:
if len(cov) != n:
raise ValueError(f"Covariance vector length must match the number of dimensions ({n}).")
cov = np.diag(cov)
elif np.ndim(cov) == 2:
cov = np.asarray(cov)
if cov.shape != (n, n):
raise ValueError(f"Covariance matrix must be ({n}, {n}).")
else:
raise ValueError("Covariance must be a scalar, 1D array, or 2D matrix.")
grids = np.meshgrid(*[np.arange(s) for s in shape], indexing='ij')
coords = np.stack(grids, axis=-1) # Shape: (*shape, n)
flat_coords = coords.reshape(-1, n)
det_cov = np.linalg.det(cov)
inv_cov = np.linalg.inv(cov)
if det_cov <= 0:
raise ValueError("Covariance matrix must be positive definite.")
norm_factor = 1 / (np.sqrt((2 * np.pi) ** n * det_cov))
diff = flat_coords - mean
exponent = -0.5 * np.sum(diff @ inv_cov * diff, axis=1)
gaussian_values = norm_factor * np.exp(exponent)
return gaussian_values.reshape(shape)
def rlu_deconvolve(image, psf, iterations=5, kernel_type='gaussian', verbose=False):
# a good psf for my images: generate_gaussian_kernel((10, 7, 7), (3, 2, 2))
""" Skimage's Richardson Lucy deconvolution with slight modifications.
Parameters:
-----------
image: array
An n-dimensional numpy array.
psf: array or iterable
Either a numpy array specifying the point spread function, or an iterable specifying the shape of the psf.
If directly point spread function, it must have the same number of dimensions as 'image'.
If an iterable, then 'kernel_type' must be specified to calculate the psf.
iterations: int
Number of iterations of the deconvolution
kernel_type: str
Either 'mean' or 'gaussian'. Conveniently calculates a point spread function.
Ignored if psf is an array.
Returns:
--------
deconvolved: array
Array with same shape as 'image'."""
cnv.cp_array(image)
if hasattr(psf, 'nonzero'):
assert image.ndim == psf.ndim, 'The image and psf must have the same number of dimensions.'
elif np.isscalar(psf):
psf = [psf] * image.ndim
elif hasattr(psf, 'index'):
if kernel_type == 'mean':
psf = np.ones(psf) / np.prod(psf)
elif kernel_type == 'gaussian':
w = [i // 3 for i in psf]
psf = generate_gaussian_kernel(psf, w)
else:
raise TypeError('kernel_type must be either of "mean" or "gaussian"')
image = image.astype(float)
psf = st._block_zeroes(psf)
im_deconv = np.full(image.shape, 0.5)
psf_mirror = psf[::-1, ::-1, ::-1]
conv_im = fftconvolve(im_deconv, psf_mirror, mode='same')
for i in range(iterations):
conv_im = st._block_zeroes(conv_im)
relative_blur = image / conv_im
c = fftconvolve(relative_blur, psf, mode='same')
im_deconv *= c
conv_im = fftconvolve(im_deconv, psf_mirror, mode='same')
if verbose:
print('iteration: {}'.format(i))
return im_deconv
def richardson_lucy(img: da.Array,
psf: da.Array,
iterations: int = 20,
backend: str = 'cupy'
):
if backend == 'cupy':
img = img.map_blocks(cp.asarray)
psf = psf.map_blocks(cp.asarray)
deconvolved = img.map_overlap(
deconvolve_block,
psf = psf,
iterations = iterations,
meta = img._meta,
depth = tuple(np.array(psf.shape) // 2),
boundary = "periodic"
)
if backend == 'cupy':
deconvolved = deconvolved.map_blocks(cp.asnumpy)
return deconvolved
def otsu(img, bincount=9, return_thresholded=True):
hist, vals = da.histogram(img, bins = bincount, range = [img.min(), img.max()]) # calculate histogram
binmids = 0.5 * (vals[1:] + vals[:-1]) # get the midpoints of the bins
countsums0 = da.cumsum(hist) # cumulative sum of the voxel counts in the bins, starting from the minimum
countsums1 = da.cumsum(hist[::-1])[::-1] # cumulative sum of the voxel counts in the bins, starting from the maximum
binsums = binmids * hist # sum of intensities within each bin
valuesums0 = da.cumsum(binsums) # cumulative sum of intensities, starting from the minimum
valuesums1 = da.cumsum(binsums[::-1])[::-1] # cumulative sum of intensities, starting from the maximum
cummeans0 = valuesums0 / countsums0 # cumulative mean of intensities, starting from the minimum
cummeans1 = valuesums1 / countsums1 # cumulative mean of intensities, starting from the maximum
objective = countsums0[:-1] * countsums1[1:] * (cummeans0[:-1] - cummeans1[
1:]) ** 2 # interclass variance equation. Frameshift ensures correct bin match
argt = da.argmax(objective) # index of the maximum interclass variation
t = binmids[argt] # threshold value corresponding to maximum interclass variation
if return_thresholded:
return img > t
else:
return t
def mean_threshold(img, return_thresholded=False):
t = da.mean(img)
if return_thresholded:
return img > t
else:
return t