-
Notifications
You must be signed in to change notification settings - Fork 0
/
lcnn.yaml
85 lines (82 loc) · 2 KB
/
lcnn.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# configurations for LCNN model
# Parameters for training model
train_params:
device: cuda
train_batch_size: 1
valid_batch_size: 1
test_batch_size: 1
predict_batch_size: 1
max_epochs: 100
# Max time used for training (days:hours:mins:secs)
max_time: "00:71:45:00"
# Validate after every n batches
val_check_interval: 1.0
num_workers: 10
gpus: 1
savefile: "lcnn-diff-rmse-30lt-20062022"
# many leadtimes
verif_leadtimes: 6
# number of batches to validate on
val_batches: 5000000
# number of baches to train on (per epoch)
train_batches: 5000000
early_stopping:
monitor: "val_loss"
patience: 5
lr_scheduler:
name: "reduce_lr_on_plateau"
kwargs:
mode: "min"
factor: 0.1
patience: 3
model:
lr: 1e-04
rainnet:
input_shape: [4, 512, 512]
kernel_size: 3
mode: "regression"
conv_shape:
[
["1", [4, 64]],
["2", [64, 128]],
["3", [128, 256]],
["4", [256, 512]],
["5", [512, 1024]],
["6", [1536, 512]],
["7", [768, 256]],
["8", [384, 128]],
["9", [192, 64]],
]
loss:
name: "rmse"
kwargs:
alpha: 0.5
discount_rate: 0.0
train_leadtimes: 6
apply_differencing: true
display: 250
prediction:
predict_leadtimes: 36
euler_transform_nworkers: 6
# Extrapolation keyword arguments
extrap_kwargs:
# Interpolation order, options
# 1 (linear).
# 0 (nearest neighbor)
# 3 (cubic)
interp_order: 3
allow_nonfinite_values: true
prediction_output:
# Output directory
output_dir: /fmi/scratch/project_2005001/nowcasts/lcnn/lcnn_diff_rmse_30lt_20062022
# Output filename format (can contain {common_time} to change time)
filename: lcnn_diff_rmse_30lt_20062022_36.h5
# where to save predictions in the HDF5 file
group_format: "{common_time:%Y-%m-%d %H:%M:%S}/lcnn-diff-rmse-30lt-20062022"
# Attributes of the dataset in the HDF5 file
what_attrs:
quantity: DBZH
gain: 0.5
offset: -32
nodata: 255
undetect: 0