-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnonymous_functions.fold
367 lines (261 loc) · 5.88 KB
/
Anonymous_functions.fold
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
--
-- # Anonymous Functions
--
-- Simple lambda functions.
x -> x
x -> x + x
-- Lambda function with a block.
x ->
let a = x + x in
a + 1
f x y ==> (f x) y
f(x, y)
-- Apply a transformation using a lambda.
List.map (should_print_output value db_handler -> x * x) [1..10]
List.map (fn should_print_output value db_handler -> x * x) [1..10]
List.map (lambda should_print_output value db_handler -> x * x) [1..10]
def prod x = x * x
List.map prod [1..10]
--
List.map {
| 0 -> 0
| n if n / 2 == 0 ->
let x = n * n * n
in
x - 1
| n ->
let x = n * n * n
in
x - 1
}
[-1..100]
List.map {
0 -> 0,
n if n / 2 == 0 ->
let x = n * n * n
in
x - 1,
n ->
let x = n * n * n
in
x - 1
}
[-1..100]
-- 1
List.map {
| 0 -> 0
| n if n / 2 == 0 -> n
| n -> n * n
}
[-1..100]
-- 2
List.map
do 0 -> 0
| n if n / 2 == 0 -> n
| n -> n * n
end
[-1..100]
-- 3
List.map
(fn 0 -> 0
| n if n / 2 == 0 -> n
| n -> n * n)
[-1..100]
List.map
(λ 0 -> 0
| n if n / 2 == 0 -> n
| n -> n * n)
[-1..100]
List.map
(\ 0 -> 0
| n -> n * n)
[-1..100]
-- Lambdas can use pattern matching with the `|` alternative operator.
-- The following lambda will replace 5 by 0.
map (do 5 -> 0 | x -> x * x end) [1..10]
[1..10 |> map match \x
| 5 -> 0
| x -> x * x
end
[1..10 |> map match \x
| 5 -> 0
| x -> x * x
end
[1..10 |> map do | 5 -> 0
| x -> x * x
[1..10 |> map fun | 5 -> 0
| x -> x * x
end
[1..10 |> map fun
| 5 -> 0
| x -> x * x
end
[1..10 |> map do
| 5 -> 0
| x -> x * x
end
let read_until file =
File.fold_while
(function
| Left r a -> Continue [a & r]
| Right r -> List.rev r)
[]
file
let read_until file =
File.fold_while
(fun Left r a -> Continue [a & r]
| Right r -> List.rev r)
[]
file
def read_until file =
File.fold_while
(fn Left r a -> Continue (a & r)
| Right r -> List.rev r)
[]
file
let read_until file =
File.fold_while file [] {
| Left r a -> Continue [a & r]
| Right r -> List.rev r
}
def read_until file =
File.fold_while {
Left r a =>
Continue [a & r]
Right r | List.rev r
}
[]
file
def read_until file =
File.fold_while
fun Left r a -> Continue [a & r]
| Right r -> List.rev r
end
[]
file
def read_until file =
file
|> File.fold_while {
| Left r a -> Continue [a & r]
| Right r -> List.rev r
}
[]
-- Length --
-- 1.0) SML style inline patterns
def length [_ & rest] = 1 + length rest
| length [] = 0
-- 2.0) Explicit match, ocaml style
def length list =
match list with
| [_ & rest] -> 1 + length rest
| [] -> 0
end
-- 2.1) Explicit match, ocaml style
def length list =
match list {
| [_ & rest] ->
1 + length rest
| [] ->
0
}
-- 3.0 Explicit match, rust style
def length list =
match list {
[_ & rest] -> 1 + length rest
[] -> 0
}
-- 3.1 Explicit match, rust style
def length list =
match list {
[_ & rest] ->
1 + length rest
[] ->
0
}
-- The same variable can be referenced multiple times.
\x + \x
-- * --
-> \ x y => x + y
-> \ 5
-> (~ + ~)
(-> system :fetcher :conf :credentials :username)
-> system #fetcher #conf #credentials #username
map (fn x flag -> process x verbose: (not flag)) [1, 2, 3, 4, 5]
map { process \x verbose: (not \flag) } [1, 2, 3, 4, 5]
map (data flag -> process data verbose: (not flag)) [1, 2, 3, 4, 5]
map (process _ verbose: (not _)) [1, 2, 3, 4, 5]
map { data flag -> process data verbose: (not flag) } [1, 2, 3, 4, 5]
map { process _ verbose: (not _) } [1, 2, 3, 4, 5]
map (data flag -> process data verbose: (not flag)) [1, 2, 3, 4, 5]
map {process _ verbose: (not _)} [1, 2, 3, 4, 5]
map (λ data flag -> process data verbose: (not flag)) [1, 2, 3, 4, 5]
map λ(process _ verbose: (not _)) [1, 2, 3, 4, 5]
map (data flag -> process data verbose: (not flag)) [1, 2, 3, 4, 5]
map {process _ verbose: (not _)} [1, 2, 3, 4, 5]
map (|data flag| -> process data verbose: (not flag)) [1, 2, 3, 4, 5]
map {process _ verbose: (not _)} [1, 2, 3, 4, 5]
-> map (|x| -> x * x) [1 .. 5]
= [1, 4, 9, 16, 25]
-> map \(_1 * _1) [1 .. 5]
= [1, 4, 9, 16, 25]
-> map \(_1 * _1) [1 .. 5]
= [1, 4, 9, 16, 25] : [Int]
-- Consider using _0 as a reference to the anonymous function, allowing this way recursion.
-- Mathematica
-- If[#1 == 1, 1, #1 * #0[#1-1]]&
-> \(_1 == 1 ? 1 : _1 * (_0 (_1 - 1)))
-> \(if (_1 == 1): 1 else: _1 * (_0 (_1 - 1)))
-> \(\1 == 1 ? 1 : @1 * (@0 (@1 - 1)))
fix = \f -> (\x a -> f (x x) a) (\x a -> f (x x) a)
fix = f -> (x a -> f (x x) a)
(x a -> f (x x) a)
-- // --
-- Anonymous functions can be wrapped in blocks.
[1..99] -> fold init: {} do dict i ->
dict # i::String <- i + i
end
[1..99]
|> fold (fn acc i -> acc!i <- i + i) (dict [])
-- This approach has some advantages over a simple lambda expression:
--
-- * Since blocks are used, at any time you can extend the block with new statements.
-- * `do` is a named argument for the lambda argument for `fold`.
squares = [1..9] -> map do n ->
n * n
end
squares = [1..9] >- map do n ->
n * n
end
squares = [1..9] -> map do n ->
n * n
end
squares = [1..9] -> map do n ->
n * n
end
for i <- [1..9]
print "hey there number {i}"
end
[print "hey there number {i}" | i <- [1..9]]
-- Lambda symbols
x y -> x + y
|x y| -> x + y
\x y -> x + y
fn x y -> x + y
do
x y -> x + y
end
fun x y -> x + y
lambda x y -> x + y
{ x y -> x + y }
{ x y -> x + y }
-- Patterns
def n + n =
Int.add n n
def (+) n n =
Int.add n n
def (+) = fn n -> fn n -> Int.add n n
(= (+ n n )
(Int.add n n))
pattern = expression
-- not a pattern
f x y = ?