-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathplanning_a_star.py
254 lines (211 loc) · 8.03 KB
/
planning_a_star.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python
# coding:utf-8
import time
import random
from cyber_py import cyber
from modules.planning.proto.planning_pb2 import PlanningInfo
from modules.planning.proto.planning_pb2 import Trajectory
from modules.planning.proto.planning_pb2 import Point
point_xy = Point()
map_w = 20
map_h = 20
map_x_min = -10
map_x_max = 10
map_y_min = 0
map_y_max = 20
class Point:
"""
表示一个点
"""
def __init__(self, x, y):
self.x = x
self.y = y
def __eq__(self, other):
if self.x == other.x and self.y == other.y:
return True
return False
def __str__(self):
return '(x:{}, y:{})'.format(self.x, self.y)
class AStar:
class Node: # 描述AStar算法中的节点数据
def __init__(self, point, endPoint, g=0):
self.point = point # 自己的坐标
self.father = None # 父节点
self.g = g # g值,g值在用到的时候会重新算
# self.h = (abs(endPoint.x - point.x) + abs(endPoint.y - point.y)) * 10 # 计算h值
# self.h = int((pow(abs(endPoint.x - point.x), 2) + pow(abs(endPoint.y - point.y), 2)) ** 0.5)# 计算h值,使用欧式距离
self.h = pow(abs(endPoint.x - point.x), 2) + \
pow(abs(endPoint.y - point.y), 2) # 计算h值
def __init__(self, startPoint, endPoint):
"""
构造AStar算法的启动条件
:param startPoint: Point类型的寻路起点
:param endPoint: Point类型的寻路终点
"""
# 开启表
self.openList = []
# 关闭表
self.closeList = []
# 起点终点
self.startPoint = startPoint
self.endPoint = endPoint
def getMinNode(self):
"""
获得openlist中F值最小的节点
"""
currentNode = self.openList[0]
for node in self.openList:
if node.g + node.h < currentNode.g + currentNode.h:
currentNode = node
return currentNode
def pointInCloseList(self, point):
for node in self.closeList:
if node.point == point:
return True
return False
def pointInOpenList(self, point):
for node in self.openList:
if node.point == point:
return node
return None
def endPointInCloseList(self):
for node in self.openList:
if node.point == self.endPoint:
return node
return None
def searchNear(self, minF, offsetX, offsetY):
"""
搜索节点周围的点, 更新openlist, 重新计算G值、设置father(如有需要)
:param minF:
:param offsetX:
:param offsetY:
:return:
"""
# 越界检测
if minF.point.x + offsetX < map_x_min or minF.point.x + offsetX > map_x_max - 1 or minF.point.y + offsetY < map_y_min or minF.point.y + offsetY > map_y_max - 1:
return
# 如果是障碍,就忽略
for obs in obslist:
if obs[0] == minF.point.x + offsetX and obs[1] == minF.point.y + offsetY:
return
# 如果在关闭表中,就忽略
if self.pointInCloseList(Point(minF.point.x + offsetX, minF.point.y + offsetY)):
return
# 设置单位花费
if offsetX == 0 or offsetY == 0:
step = 7
else:
step = 14
if offsetX > 0 and offsetY >= 0:
step = step + 14
# 如果不在openList中,就把它加入openlist
currentNode = self.pointInOpenList(
Point(minF.point.x + offsetX, minF.point.y + offsetY))
if not currentNode:
currentNode = AStar.Node(Point(minF.point.x + offsetX, minF.point.y + offsetY), self.endPoint,
g=minF.g + step)
currentNode.father = minF
self.openList.append(currentNode)
return
# 如果在openList中,判断minF到当前点的G是否更小
if minF.g + step < currentNode.g: # 如果更小,就重新计算g值,并且改变father
currentNode.g = minF.g + step
currentNode.father = minF
def expansion(self, offset=0):
"""
地图障碍物膨胀
:param offset: 膨胀次数
"""
obslist_old = []
for point in obslist:
obslist_old.append(point)
for i in range(offset):
for xy in obslist_old:
offset = 1
points = [[-offset, offset], [0, offset], [offset, offset], [-offset, 0],
[offset, 0], [-offset, -offset], [0, -offset], [offset, -offset]]
for point in points:
if map_x_min <= xy[0] + point[0] < map_x_max and map_y_min <= xy[1] + point[1] < map_y_max:
obslist.append([xy[0] + point[0], xy[1] + point[1]])
def start(self):
"""
开始寻路
:return: None或Point列表(路径)
"""
# 将起点放入开启列表
startNode = AStar.Node(self.startPoint, self.endPoint)
self.openList.append(startNode)
# 主循环逻辑
while True:
# 找到F值最小的点
minF = self.getMinNode()
# 把这个点加入closeList中,并且在openList中删除它
self.closeList.append(minF)
self.openList.remove(minF)
# 判断这个节点的上下左右节点
self.searchNear(minF, -1, 1)
self.searchNear(minF, 0, 1)
self.searchNear(minF, 1, 1)
self.searchNear(minF, -1, 0)
self.searchNear(minF, 1, 0)
self.searchNear(minF, -1, -1)
self.searchNear(minF, 0, -1)
self.searchNear(minF, 1, -1)
# 判断是否终止
point = self.endPointInCloseList()
if point: # 如果终点在关闭表中,就返回结果
cPoint = point
pathList = []
while True:
if cPoint.father:
pathList.append(cPoint.point)
cPoint = cPoint.father
else:
return list(reversed(pathList))
if len(self.openList) == 0:
return None
class planning(object):
def __init__(self, node):
self.node = node
self.node.create_reader(
"/planning/target", PlanningInfo, self.callback)
self.writer = self.node.create_writer(
"/planning/trajectory", Trajectory)
def callback(self, data):
global obslist, map_w, map_h, map_x_min, map_x_max, map_y_min, map_y_max
obslist = []
pStart_x = int(20 * data.start_point.x)
pStart_y = int(20 * data.start_point.y)
pEnd_x = int(20 * data.end_point.x)
pEnd_y = int(20 * data.end_point.y - 1)
pStart = Point(pStart_x, pStart_y)
pEnd = Point(pEnd_x, pEnd_y)
for point in data.obs_points:
obslist.append([int(20 * point.x), int(20 * point.y)])
for i in range(0):
obslist.append([random.uniform(2, pEnd.y),
random.uniform(2, pEnd.y)])
#time_start = time.time()
# 创建AStar对象,并设置起点终点
aStar = AStar(pStart, pEnd)
aStar.expansion(offset=9)
# 开始寻路
pathList = aStar.start()
#time_end = time.time()
#print('totally cost', time_end - time_start)
self.planning_path = Trajectory()
if not pathList:
print("Failed to find a path")
else:
for path_point in pathList:
point_xy.x = path_point.x * 0.05
point_xy.y = path_point.y * 0.05
self.planning_path.point.append(point_xy)
if not cyber.is_shutdown() and self.planning_path:
self.writer.write(self.planning_path)
if __name__ == '__main__':
cyber.init()
cyber_node = cyber.Node("planning")
exercise = planning(cyber_node)
cyber_node.spin()
cyber.shutdown()