-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathP23.R
37 lines (29 loc) · 1.18 KB
/
P23.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# making table data sets
library(dplyr)
library(tidyr)
library(MorpheusData)
#############benchmark 1
dat <- read.table(text=
"custno 1 2 3
100 29.85 49.75 146.70
100 122.70 49.75 39.80
100 0.00 9.95 44.95
", header=T)
write.csv(dat, "data-raw/p23_input1.csv", row.names=FALSE)
df_out = gather(dat, month, spent, -`custno`) %>%
group_by(custno) %>%
summarise(totalspent = sum(spent)) %>%
arrange(desc(totalspent))
write.csv(df_out, "data-raw/p23_output1.csv", row.names=FALSE)
p23_output1 <- read.csv("data-raw/p23_output1.csv", check.names = FALSE)
fctr.cols <- sapply(p23_output1, is.factor)
int.cols <- sapply(p23_output1, is.integer)
p23_output1[, fctr.cols] <- sapply(p23_output1[, fctr.cols], as.character)
p23_output1[, int.cols] <- sapply(p23_output1[, int.cols], as.numeric)
save(p23_output1, file = "data/p23_output1.rdata")
p23_input1 <- read.csv("data-raw/p23_input1.csv", check.names = FALSE)
fctr.cols <- sapply(p23_input1, is.factor)
int.cols <- sapply(p23_input1, is.integer)
p23_input1[, fctr.cols] <- sapply(p23_input1[, fctr.cols], as.character)
p23_input1[, int.cols] <- sapply(p23_input1[, int.cols], as.numeric)
save(p23_input1, file = "data/p23_input1.rdata")