-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathP26.R
55 lines (44 loc) · 1.7 KB
/
P26.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# making table data sets
library(dplyr)
library(tidyr)
library(MorpheusData)
library(data.table)
#############benchmark 26
t1 <- read.table(text=
" Town Captured Proportion
A 184 0.25
B 243 0.33
", header=T)
t2 <- read.table(text=
"
Town Species Freq
A funestus 106
A funestus 7
B funestus 5
A gambiae 38
A gambiae 6
B gambiae 234
",header=T)
d1 = t2 %>% group_by(Town,Species) %>% summarise(f=sum(Freq)) %>% spread(Species,f)
df_out = inner_join(t1,d1)
write.csv(df_out, "data-raw/p26_output1.csv", row.names=FALSE)
write.csv(t1, "data-raw/p26_input1.csv", row.names=FALSE)
write.csv(t2, "data-raw/p26_input2.csv", row.names=FALSE)
p26_output1 <- read.csv("data-raw/p26_output1.csv", check.names = FALSE)
fctr.cols <- sapply(p26_output1, is.factor)
int.cols <- sapply(p26_output1, is.integer)
p26_output1[, fctr.cols] <- sapply(p26_output1[, fctr.cols], as.character)
p26_output1[, int.cols] <- sapply(p26_output1[, int.cols], as.numeric)
save(p26_output1, file = "data/p26_output1.rdata")
p26_input1 <- read.csv("data-raw/p26_input1.csv", check.names = FALSE)
fctr.cols <- sapply(p26_input1, is.factor)
int.cols <- sapply(p26_input1, is.integer)
p26_input1[, fctr.cols] <- sapply(p26_input1[, fctr.cols], as.character)
p26_input1[, int.cols] <- sapply(p26_input1[, int.cols], as.numeric)
save(p26_input1, file = "data/p26_input1.rdata")
p26_input2 <- read.csv("data-raw/p26_input2.csv", check.names = FALSE)
fctr.cols <- sapply(p26_input2, is.factor)
int.cols <- sapply(p26_input2, is.integer)
p26_input2[, fctr.cols] <- sapply(p26_input2[, fctr.cols], as.character)
p26_input2[, int.cols] <- sapply(p26_input2[, int.cols], as.numeric)
save(p26_input2, file = "data/p26_input2.rdata")