-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathP34.R
43 lines (32 loc) · 1.41 KB
/
P34.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# making table data sets
library(dplyr)
library(tidyr)
library(MorpheusData)
#############benchmark 34
df <- tbl_df(mtcars)
dat <- df %>%
select(mpg, cyl, vs, am, gear, carb) %>% # select variables to summarise
summarise_each(funs(min = min,
q25 = quantile(., 0.25),
median = median,
q75 = quantile(., 0.75),
max = max,
mean = mean,
sd = sd)) %>% select(1:12)
write.csv(dat, "data-raw/p34_input1.csv", row.names=FALSE)
df_out = dat %>% gather(stat, val) %>%
separate(stat, into = c("var", "stat")) %>%
spread(stat, val)
write.csv(df_out, "data-raw/p34_output1.csv", row.names=FALSE)
p34_output1 <- read.csv("data-raw/p34_output1.csv", check.names = FALSE)
fctr.cols <- sapply(p34_output1, is.factor)
int.cols <- sapply(p34_output1, is.integer)
p34_output1[, fctr.cols] <- sapply(p34_output1[, fctr.cols], as.character)
p34_output1[, int.cols] <- sapply(p34_output1[, int.cols], as.numeric)
save(p34_output1, file = "data/p34_output1.rdata")
p34_input1 <- read.csv("data-raw/p34_input1.csv", check.names = FALSE)
fctr.cols <- sapply(p34_input1, is.factor)
int.cols <- sapply(p34_input1, is.integer)
p34_input1[, fctr.cols] <- sapply(p34_input1[, fctr.cols], as.character)
p34_input1[, int.cols] <- sapply(p34_input1[, int.cols], as.numeric)
save(p34_input1, file = "data/p34_input1.rdata")