-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathP52.R
43 lines (35 loc) · 1.31 KB
/
P52.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# making table data sets
library(dplyr)
library(tidyr)
library(MorpheusData)
#############benchmark 52
dat <- data.frame(
Scenario = c('base','stress','extreme'),
x_min = c(-3,-2, -2.5),
x_mean = c(0,0.25, 1),
x_max = c(2, 1, 3),
y_min = c(-1.5, -2, -3),
y_mean = c(1, 2, 3),
y_max = c(5, 3, 3.5),
z_min = c(0, 1, 3),
z_mean = c(0.25, 2, 5),
z_max = c(2, 4, 7)
)
write.csv(dat, "data-raw/p52_input1.csv", row.names=FALSE)
df_out = dat %>%
gather(var, val, -Scenario) %>%
separate(var, into = c('varNew', 'stat')) %>%
spread(stat, val)
write.csv(df_out, "data-raw/p52_output1.csv", row.names=FALSE)
p52_output1 <- read.csv("data-raw/p52_output1.csv", check.names = FALSE)
fctr.cols <- sapply(p52_output1, is.factor)
int.cols <- sapply(p52_output1, is.integer)
p52_output1[, fctr.cols] <- sapply(p52_output1[, fctr.cols], as.character)
p52_output1[, int.cols] <- sapply(p52_output1[, int.cols], as.numeric)
save(p52_output1, file = "data/p52_output1.rdata")
p52_input1 <- read.csv("data-raw/p52_input1.csv", check.names = FALSE)
fctr.cols <- sapply(p52_input1, is.factor)
int.cols <- sapply(p52_input1, is.integer)
p52_input1[, fctr.cols] <- sapply(p52_input1[, fctr.cols], as.character)
p52_input1[, int.cols] <- sapply(p52_input1[, int.cols], as.numeric)
save(p52_input1, file = "data/p52_input1.rdata")