-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathP75.R
44 lines (36 loc) · 1.22 KB
/
P75.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# making table data sets
library(dplyr)
library(tidyr)
library(MorpheusData)
#############benchmark 1
dat <- read.table(text=
"
X1 X2 X3
S1 0.1 1
S2 0.2 2
S3 0.3 1
S4 0.4 1
S1 0.6 2
S2 0.7 1
S3 0.8 2
S4 0.9 2
S4 1.9 2
", header=T)
write.csv(dat, "data-raw/p75_input1.csv", row.names=FALSE)
df_out = dat %>% group_by(X1, X3) %>%
summarize(X2.avg = mean(X2)) %>%
spread(X1, X2.avg) %>%
filter(X3 < 3)
write.csv(df_out, "data-raw/p75_output1.csv", row.names=FALSE)
p75_output1 <- read.csv("data-raw/p75_output1.csv", check.names = FALSE)
fctr.cols <- sapply(p75_output1, is.factor)
int.cols <- sapply(p75_output1, is.integer)
p75_output1[, fctr.cols] <- sapply(p75_output1[, fctr.cols], as.character)
p75_output1[, int.cols] <- sapply(p75_output1[, int.cols], as.numeric)
save(p75_output1, file = "data/p75_output1.rdata")
p75_input1 <- read.csv("data-raw/p75_input1.csv", check.names = FALSE)
fctr.cols <- sapply(p75_input1, is.factor)
int.cols <- sapply(p75_input1, is.integer)
p75_input1[, fctr.cols] <- sapply(p75_input1[, fctr.cols], as.character)
p75_input1[, int.cols] <- sapply(p75_input1[, int.cols], as.numeric)
save(p75_input1, file = "data/p75_input1.rdata")