-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathP85.R
39 lines (31 loc) · 1.27 KB
/
P85.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# making table data sets
library(dplyr)
library(tidyr)
library(MorpheusData)
library(data.table)
#############benchmark 85
set.seed(14592)
dat <- data.frame(
vial_id = 1:6,
band = sample(0:2, 6, replace = TRUE),
non_spec = sample(0:2, 6, replace = TRUE),
reads = rnorm(6)
)
write.csv(dat, "data-raw/p85_input1.csv", row.names=FALSE)
df_out = dat %>%
unite(group_id, band, non_spec) %>%
group_by(group_id) %>%
summarize(group_mean = mean(reads))
write.csv(df_out, "data-raw/p85_output1.csv", row.names=FALSE)
p85_output1 <- read.csv("data-raw/p85_output1.csv", check.names = FALSE)
fctr.cols <- sapply(p85_output1, is.factor)
int.cols <- sapply(p85_output1, is.integer)
p85_output1[, fctr.cols] <- sapply(p85_output1[, fctr.cols], as.character)
p85_output1[, int.cols] <- sapply(p85_output1[, int.cols], as.numeric)
save(p85_output1, file = "data/p85_output1.rdata")
p85_input1 <- read.csv("data-raw/p85_input1.csv", check.names = FALSE)
fctr.cols <- sapply(p85_input1, is.factor)
int.cols <- sapply(p85_input1, is.integer)
p85_input1[, fctr.cols] <- sapply(p85_input1[, fctr.cols], as.character)
p85_input1[, int.cols] <- sapply(p85_input1[, int.cols], as.numeric)
save(p85_input1, file = "data/p85_input1.rdata")