-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathP86.R
46 lines (37 loc) · 1.52 KB
/
P86.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# making table data sets
library(dplyr)
library(tidyr)
library(MorpheusData)
#############benchmark 1
dat <- read.table(text=
"
sample_ID site species TOT inf_status
382870 site_1 Species_B 1 positive
487405 site_2 Species_A 1 positive
487405 site_2 Species_B 1 positive
487405 site_2 Species_A 1 positive
382899 site_1 Species_A 1 positive
382899 site_1 Species_C 1 positive
382899 site_2 Species_C 10 positive
382899 site_1 Species_D 1 positive
382899 site_2 Species_D 20 positive
", header=T)
write.csv(dat, "data-raw/p86_input1.csv", row.names=FALSE)
df_out = dat %>%
unite(sp_status, species, inf_status) %>%
group_by(site, sp_status) %>%
summarise(TOTSum = sum(TOT)) %>%
spread(sp_status, TOTSum)
write.csv(df_out, "data-raw/p86_output1.csv", row.names=FALSE)
p86_output1 <- read.csv("data-raw/p86_output1.csv", check.names = FALSE)
fctr.cols <- sapply(p86_output1, is.factor)
int.cols <- sapply(p86_output1, is.integer)
p86_output1[, fctr.cols] <- sapply(p86_output1[, fctr.cols], as.character)
p86_output1[, int.cols] <- sapply(p86_output1[, int.cols], as.numeric)
save(p86_output1, file = "data/p86_output1.rdata")
p86_input1 <- read.csv("data-raw/p86_input1.csv", check.names = FALSE)
fctr.cols <- sapply(p86_input1, is.factor)
int.cols <- sapply(p86_input1, is.integer)
p86_input1[, fctr.cols] <- sapply(p86_input1[, fctr.cols], as.character)
p86_input1[, int.cols] <- sapply(p86_input1[, int.cols], as.numeric)
save(p86_input1, file = "data/p86_input1.rdata")