-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathP91.R
35 lines (27 loc) · 1.08 KB
/
P91.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# making table data sets
library(dplyr)
library(tidyr)
library(MorpheusData)
#############benchmark 91
dat <- read.table(text=
" Name Score
John 10
John 2
James 5", header=T)
write.csv(dat, "data-raw/p91_input1.csv", row.names=FALSE)
df_out = dat %>% filter(Name=="John") %>%
group_by(Name) %>%
summarise(Value=mean(Score))
write.csv(df_out, "data-raw/p91_output1.csv", row.names=FALSE)
p91_output1 <- read.csv("data-raw/p91_output1.csv", check.names = FALSE)
fctr.cols <- sapply(p91_output1, is.factor)
int.cols <- sapply(p91_output1, is.integer)
p91_output1[, fctr.cols] <- sapply(p91_output1[, fctr.cols], as.character)
p91_output1[, int.cols] <- sapply(p91_output1[, int.cols], as.numeric)
save(p91_output1, file = "data/p91_output1.rdata")
p91_input1 <- read.csv("data-raw/p91_input1.csv", check.names = FALSE)
fctr.cols <- sapply(p91_input1, is.factor)
int.cols <- sapply(p91_input1, is.integer)
p91_input1[, fctr.cols] <- sapply(p91_input1[, fctr.cols], as.character)
p91_input1[, int.cols] <- sapply(p91_input1[, int.cols], as.numeric)
save(p91_input1, file = "data/p91_input1.rdata")