-
Notifications
You must be signed in to change notification settings - Fork 0
/
CS1231S Midterm.tex
494 lines (390 loc) · 18.1 KB
/
CS1231S Midterm.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
% Edited by Howard Liu
% Original: https://github.com/ning-y/Cheatsheets/blob/master/src/cs1231-midterms-2018s1.tex
\documentclass[a4paper]{article}
\usepackage[
a4paper, left=1cm, right=1cm, top=1cm, bottom=1cm, landscape
]{geometry}
\usepackage{multicol}
\usepackage{amsmath}
\usepackage{amsfonts} % \mathbb
\usepackage{amssymb} % \nmid
\usepackage{enumitem} % [leftmargin=*]
\usepackage{IEEEtrantools}
\newcommand{\heading}[1]{{\small\underline{\textbf{#1}}}}
\newcommand{\subheading}[1]{{\scriptsize\textbf{#1}}}
\begin{document}
\scriptsize % Small fonts
\pagenumbering{gobble} % No page numbers
\setlength\parindent{0pt} % No indents at start of paragraphs
\setlength{\abovedisplayskip}{3pt} % Less spacing before equations
\setlength{\belowdisplayskip}{3pt} % less spacing after equations
% TITLE %
\begin{center}
{\large CS1231(S) Cheatsheet}\\{for Mid-term of AY 19/20 Semester 1, by Howard Liu}
\end{center}
% BODY %
\begin{multicols*}{4}
%% Preface %%
Appendix A of Epp is not covered. Theorems, corollaries, lemmas, etc. not
mentioned in the lecture notes are marked with an asterisk (*).\\
%% Proofs %%
\heading{Proofs} \\
\subheading{Basic Notation}
\begin{itemize}[leftmargin=*] \itemsep -0.5em
\item $\mathbb{R}$: the set of all real numbers
\item $\mathbb{Z}$: the set of integers
\item $\mathbb{N}$: the set of natural numbers (include $0$, i.e. $\mathbb{Z}_{\ge 0}$)
\item $\mathbb{Q}$: the set of rationals
\item $\exists$: there exists...
\item $\exists!$: there exists a unique...
\item $\forall$: for all...
\item $\in$: member of...
\item $\ni$: such that...
\item $\sim$: not ...
\end{itemize}
\subheading{Proof Types}
\begin{itemize}[leftmargin=*] \itemsep -0.5em
\item \textbf{By Construction}: finding or giving a set of directions to
reach the statement to be proven true.
\item \textbf{By Contraposition}: proving a statement through its logical
equivalent contrapositive.
\item \textbf{By Contradiction}: proving that the negation of the statement
leads to a logical contradiction.
\item \textbf{By Exhaustion}: considering each case.
\item \textbf{By Mathematical Induction}: proving for a base case, then an
induction step.
\vspace{-1em} % hackhackhack
\begin{enumerate} \itemsep -0.2em
\item $P(a)$
\item $\forall k \in \mathbb{Z}, k \geq a\;(P(k) \rightarrow P(k+1))$
\item $\boldsymbol{\cdot} \forall n \in \mathbb{Z}, n \geq a\;(P(n))$
\end{enumerate}
\vspace{-0.5em}
\item \textbf{By Strong Induction}: mathematical induction assuming $P(k),
P(k-1), \cdots, P(a)$ are all true.
\item \textbf{By Structural Induction}: MI assuming $P(x)$ is true, prove
$P(f(x))$ is true ($f(x)$ is the recursion set rule, i.e. if $x \in S,
f(x) \in S$)
\end{itemize}
\subheading{Order of Operations}
In the ascending order (1 executes first, 3 is the latest, can be overwritten by parenthesis)
\begin{enumerate}
\item \textbf{Negation}: $\sim$ (also represented as $\neg$)
\item \textbf{Logic AND \& OR}: $\land$ and $\lor$
\item \textbf{Implication}: $\rightarrow$
\end{enumerate}
\subheading{Universal \& Existential Generalisation}\\
\textit{`All boys wear glasses'} is written as
$$\forall x (\text{Boy}(x) \rightarrow \text{Glasses}(x)) $$
If conjunction was used, this statement would be falsified by the existence of a
`non-boy' in the domain of $x$.\\
\textit{`There is a boy who wears glasses'} is written as
$$\exists x (\text{Boy}(x) \land \text{Glasses}(x)) $$
If implication was used, this statement would true even if the domain of $x$ is
empty.\\
\subheading{Valid Arguments as Tautologies}\\
All valid arguments can be \textit{restated} as tautologies.\\
\subheading{Rules of Inference}\\
Modus ponens
\begin{eqnarray*}
&p \rightarrow q \\
&p \\
&\boldsymbol{\cdot}\; q
\end{eqnarray*}
Modus tollens
\begin{eqnarray*}
&p \rightarrow q \\
&\sim q \\
&\boldsymbol{\cdot}\; \sim p
\end{eqnarray*}
Generalization
\begin{eqnarray*}
&p\\
&\boldsymbol{\cdot}\; p \lor q
\end{eqnarray*}
Specialization
\begin{eqnarray*}
&p \land q\\
&\boldsymbol{\cdot}\; p
\end{eqnarray*}
Elimination
\begin{eqnarray*}
&p \lor q\\
&\sim q\\
&\boldsymbol{\cdot}\; p
\end{eqnarray*}
Transitivity
\begin{eqnarray*}
&p \rightarrow q\\
&q \rightarrow r\\
&\boldsymbol{\cdot}\; p \rightarrow r
\end{eqnarray*}
Proof by Division into Cases
\begin{eqnarray*}
&p \lor q\\
&p \rightarrow r\\
&q \rightarrow r\\
&\boldsymbol{\cdot}\; r
\end{eqnarray*}
Contradiction Rule
\begin{eqnarray*}
&\sim p \rightarrow \textbf{c(ontradiction)}\\
&\boldsymbol{\cdot}\; p
\end{eqnarray*}
\subheading{Universal Rules of Inference}\\
Only modus ponens, modus tollens, and transitivity have universal versions in
the lecture notes.\\
\subheading{Implicit Quantification}\\
The notation $P(x) \implies Q(x)$ means that every element in the truth set of
$P(x)$ is in the truth set of $Q(x)$, or equivalently, $\forall x, P(x)
\rightarrow Q(x)$.\\
The notation $P(x) \iff Q(x)$ means that $P(x)$ and $Q(x)$ have identical truth
sets, or equivalently, $\forall x, P(x) \leftrightarrow Q(x)$.\\
\subheading{Implication Law}\\
$$p \rightarrow q \equiv \sim p \lor q$$
\subheading{Universal Instantiation}\\
If some property is true of everything in a set, then it is true of any
particular thing in the set.\\
\subheading{Universal Generalization}\\
If $P(c)$ must be true, and we have assumed nothing about $c$, then $\forall x,
P(x)$ is true.\\
\subheading{Regular Induction}\\
\begin{eqnarray*}
&P(0) \\
&\forall k \in \mathbb{N}, P(k) \rightarrow P(k+1) \\
& \forall
\end{eqnarray*}
\subheading{Epp T2.1.1 Logical Equivalences}\\
Commutative Laws
$$ p \land q \equiv q \land p $$
$$ p \lor q \equiv q \lor p $$
Associative Laws
$$ (p \land q) \land r \equiv p \land (q \land r) $$
$$ (p \lor q) \lor r \equiv p \lor (q \lor r) $$
Distributive Laws
$$ p \land (q \lor r) \equiv (p \land q) \lor (p \land r) $$
$$ p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) $$
Identity Laws
$$ p \land \textbf{true} \equiv p $$
$$ p \lor \textbf{false} \equiv p $$
Negation Laws
$$ p \lor \sim p \equiv \textbf{true} $$
$$ p \land \sim p \equiv \textbf{false} $$
Double Negative Law
$$ \sim ( \sim p ) \equiv p $$
Idempotent Laws
$$ p \land p \equiv p $$
$$ p \lor p \equiv p $$
Universal Bound Laws
$$ p \lor \textbf{true} \equiv \textbf{true} $$
$$ p \land \textbf{false} \equiv \textbf{false} $$
De Morgan's Laws
$$ \sim ( p \land q ) \equiv \sim p \lor \sim q $$
$$ \sim ( p \lor q ) \equiv \sim p \land \sim q $$
Absorption Laws
$$ p \lor (p \land q) \equiv p $$
$$ p \land (p \lor q) \equiv p $$
Negations of $\textbf{true}$ and $\textbf{false}$
$$ \sim \textbf{true} \equiv \textbf{false} $$
$$ \sim \textbf{false} \equiv \textbf{true} $$
\subheading{Definition 2.2.1 (Conditional)}\\
If $p$ and $q$ are statement variables, the conditional of $q$ by $p$ is ``if
$p$ then $q$" or ``$p$ implies $q$", denoted $p \rightarrow q$. It is false
when $p$ is true and $q$ is false; otherwise it is true. We call $p$ the
\textit{hypothesis} (or \textit{antecedent}), and $q$ the \textit{conclusion}
(or \textit{consequent}).\\
A conditional statement that is true because its hypothesis is false is called
\textit{vacuously true} or \textit{true by default}.\\
\subheading{Definition 2.2.2 (Contrapositive)}\\
The contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$. Note: one will always be equivalent to the other.\\
\subheading{Definition 2.2.3 (Converse)}\\
The converse of $p \rightarrow q$ is $q \rightarrow p$.\\
\subheading{Definition 2.2.4 (Inverse)}\\
The inverse of $p \rightarrow q$ is $\sim p \rightarrow \sim q$.\\
\subheading{Definition 2.2.6 (Biconditional)}\\
The biconditional of $p$ and $q$ is denoted $p \leftrightarrow q$ and is true if
both $p$ and $q$ have the same truth values, and is false if $p$ and $q$ have
opposite truth values.\\
\subheading{Definition 2.2.7 (Necessary \& Sufficient)}\\
``$r$ is sufficient for $s$" means $r \rightarrow s$, ``$r$ is necessary for
$s$" means $\sim r \rightarrow \sim s$ or equivalently $s \rightarrow r$.\\
\subheading{Definition 2.3.2 (Sound \& Unsound Arguments)}\\
An argument is called \textit{sound}, iff it is valid and all its premises are
true.\\
\subheading{Definition 3.1.2 (Universal Statement)}\\
A \textit{universal statement} is of the form $$\forall x \in D, Q(x)$$ It is
defined to be true iff $Q(x)$ is true for every $x$ in $D$. It is defined to be
false iff $Q(x)$ is false for at least one $x$ in D.\\
\subheading{Definition 3.1.3 (Existential Statement)}\\
A \textit{existential statement} is of the form $$\exists x \in D \text{ s.t. }
Q(x)$$ It is defined to be true iff $Q(x)$ is true for at least one $x$ in $D$.
It is defined to be false iff $Q(x)$ is false for all $x$ in $D$.\\
\subheading{Theorem 3.1.6 (Equivalent Forms of Universal and Existential State.)}\\
By narrowing $\mathcal{U}$ to be the domain $D$ consisting of all values of the variable $x$ that makes $P(x)$ \textbf{true},
$$ \forall_{x \in \mathcal{U}}, P(x) \implies Q(x) \equiv \forall_{x \in D}, Q(x) $$
Similarly,
$$ \exists x \text{ s.t. } P(x) \land Q(x) \equiv \exists x \in D \text{ s.t. } Q(x) $$
\subheading{Theorem 3.2.1 (Negation of Universal State.)}\\
The negation of a statement of the form $$\forall x \in D, P(x)$$ is logically
equivalent to a statement of the form $$\exists x \in D \text{ s.t. } \sim
P(x)$$
\subheading{Theorem 3.2.2 (Negation of Existential State.)}\\
The negation of a statement of the form
$$\exists x \in D \text{ s.t. } P(x)$$
is logically equivalent to a statement of the form
$$\forall x \in D, \sim P(x)$$
Note: for negation of $\exists!$, consider
$$\exists! x \text{ s.t. } P(x) \equiv \exists x \text{ s.t. } (P(x) \land (\forall_{y \in \mathcal{U}} P(y) \rightarrow (y=x)) $$
\subheading{Theorem 3.2.4 (Vacuous Truth of Universal State.)}\\
In general, a statement of the form
$$\forall_{x \in D}, P(x) \rightarrow Q(x) $$
is called \textbf{vacuously true/true by default} iff $P(x)$ is \textbf{false} for every $x$ in $D$\\
\heading{Sets} \\
\subheading{Definition 6.1.1 (Subsets \& Supersets)}
$S$ is a subset of $T$ if all the elements of $S$ are elements of $T$, denoted
$S \subseteq T$. Formally, $$S \subseteq T \longleftrightarrow \forall x \in S
(x \in T)$$
\subheading{Definition 6.2.1 (Empty Set)}
An empty set has no element, and is denoted $\varnothing$ or $\{\}$. Formally,
where $\mathcal{U}$ is the universal set: $$\forall Y \in \mathcal{U} (Y \not\in
\varnothing)$$
\subheading{Epp T6.24}
An empty set is a subset of all sets.
$$\forall S\text{, $S$ is a set, }\varnothing \subseteq S$$
\subheading{Definition 6.2.2 (Set Equality)}
Two sets are equal iff they have the same elements.\\
\subheading{Proposition 6.2.3}
For any two sets $X, Y$, $X$ and $Y$ are subsets of each other iff $X = Y$.
Formally,
$$\forall X, Y((X \subseteq Y \land Y \subseteq X) \longleftrightarrow X=Y)$$
\subheading{Epp C6.2.5 (Empty Set is Unique)}
It's what it says.\\
\subheading{Definition 6.2.4 (Power Set)}
The power set of a set $S$ denoted $\mathcal{P}(S)$, or $2^S$; is the set whose
elements are all possible subsets of $S$. Formally,
$$\mathcal{P}(S) = \{X\;|\;X\subseteq S\}$$
\subheading{Theorem 6.3.1}
If a set $X$ has $n$ elements, $n \geq 0$, then $\mathcal{P}(X)$ has $2^n$
elements. \\
\subheading{Definition 6.3.1 (Union)}
Let $S$ be a set of sets. $T$ is the union of sets in $S$, iff each element of
$T$ belongs to some set in $S$. Formally,
$$T=\bigcup S = \bigcup_{X\in S} X = \{ y \in \mathcal{U}\;|\;\exists X \in S (y
\in X)\}$$
\subheading{Definition 6.3.3 (Intersection)}
Let $S$ be a non-empty set of sets. $T$ is the intersection of sets in $S$, iff
each element of $T$ also belongs to all the sets in $S$. Formally,
\begin{align*}
T &= \bigcap S = \bigcap_{X \in S} X \\
&= \{y \in \mathcal{U}\;|\; \forall X ((X \in S) \rightarrow (y \in X)) \}
\end{align*}
\subheading{Definition 6.3.5 (Disjoint)}
Let $S, T$ be sets. $S$ and $T$ are disjoint iff $S \cap T = \varnothing$.\\
\subheading{Definition 6.3.6 (Mutually Disjoint)}
Let $V$ be a set of sets. The sets $T \in V$ are mutually disjoint iff every two
distinct sets are disjoint. Formally,
$$\forall X, Y \in V (X \neq Y \rightarrow X \cap Y = \varnothing)$$
\subheading{Definition 6.3.7 (Partition)}
Let $S$ be a set, and $V$ a set of non-empty subsets of $S$. Then $V$ is a
partition of $S$ iff
\begin{enumerate} \itemsep -0.5em
\item The sets in $V$ are mutually disjoint
\item The union of sets in $V$ equals $S$
\end{enumerate}
\subheading{Definition 6.3.8 (Non-symmetric Difference)}
Let $S, T$ be two sets. The (non-symmetric) difference of $S$ and $T$ denoted
$S-T$ or $S\setminus T$ is the set whose elements belong to $S$ and do not
belong to $T$. Formally,
$$S - T = \{y \in \mathcal{U}\;|\;y \in S \land y \not\in T \}$$
This is analogous to subtraction for numbers.\\
\subheading{Definition 6.3.10 (Set Complement)}
Let $A \subseteq \mathcal{U}$. Then, the complement of A denoted $\overline{A}$ is
$\mathcal{U}-A$.\\
\subheading{Set Properties}
Let $A, B, C$ be sets, some properties are:
\begin{itemize}[leftmargin=*] \itemsep -0.3em
\item $\bigcup \varnothing = \bigcup_{A \in \varnothing} A = \varnothing$
\item $\bigcup \{A\} = A$
\item \textbf{Commutative Laws}: $A \cup B = B \cup A$, $A \cap B = B \cap A$
\item \textbf{Associative Laws}: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$
\item \textbf{Distributive Laws}: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
\item \textbf{Identity Laws}: $A \cup \varnothing = A$, $A \cap \mathcal{U} = A$
\item \textbf{Complement Laws}: $A \cup \overline{A} = \mathcal{U}$, $A \cap \overline{A} = \varnothing$
\item \textbf{Double Complement Law}: $\overline{(\overline{A})} = A$
\item \textbf{Idempotent Laws}: $A \cup A = A$, $A \cap A = A$
\item \textbf{Universal Bound Laws}: $A \cup \mathcal{U} = \mathcal{U}$, $A \cap \varnothing = \varnothing$
\item \textbf{De Morgan's Laws}: $\overline{A \cup B} = \overline{A} \cap \overline{B}$, $\overline{A \cap B} = \overline{A} \cup \overline{B}$
\item \textbf{Adsorption Laws}: $A \cup (A \cap B) = A$, $A \cap (A \cup B) = A$
\item \textbf{Set Difference Law}: $A - B = A \cap \overline{B}$
\item $\overline{\mathcal{U}} = \varnothing$, $\overline{\varnothing} = \mathcal{U}$
\item $A \subseteq B \leftrightarrow A \cup B = B \leftrightarrow A \cap B = A$
\end{itemize}
\heading{Functions} \\
\subheading{Definition 7.1.1 (Function)}
Let $f$ be a relation such that $f \subseteq S \times T$. Then $f$ is a function
from $S$ to $T$ denoted $f: S\rightarrow T$ iff
$$\forall x \in S, \exists! y \in T(x\;f\;y)$$
(Intuitively, this means that every element in $S$ must have exactly one
`outgoing arrow', \textbf{AND} the `arrow' must land in $T$.)\\
\subheading{Definitions 7.1.[2-5]}
Let $f : S \rightarrow T$ be a function, $x \in S$ and $y \in T$ such that
$f(x)=y$; $U \subseteq S$, and $V \subseteq T$.\\
$x$ is a pre-image (7.1.2) of $y$.\\
The inverse image of the element (7.1.3) $y$ is the set of all its pre-images,
i.e. $\{x \in S\;|\;f(x) = y\}$.\\
The inverse image of the set (7.1.4) $V$ is the set that contains all the
pre-images of all the elements of $V$, i.e.
$\{x \in S\;|\;\exists y \in V (f(x) = y)\}$.\\
The restriction (7.1.5) of $f$ to $U$ is the set
$\{(x, y) \in U \times T\;|\;f(x)=y\}$.\\
\subheading{Definition 7.2.1 (Injective, or One-to-one)}
Let $f : S \rightarrow T$ be a function. $f$ is injective (or one-to-one) iff
$$\forall y \in T, \forall x_1, x_2 \in S (
(f(x_1) = y\;\land\;f(x_2) = y) \rightarrow x_1 = x_2)$$
(Intuitively, this means that every element in $T$ has \textbf{at most} one `incoming
arrow'.)\\
\subheading{Definition 7.2.2 (Surjective, or Onto)}
Let $f : S \rightarrow T$ be a function. $f$ is surjective (or onto) iff
$$\forall y \in T, \exists x \in S (f(x) = y)$$
(Intuitively, this means that every element in $T$ has \textbf{at least} one `incoming
arrow'.)\\
\subheading{Definition 7.2.3 (Bijective)}
A function is bijective (or is a bijection) iff it is injective and
subjective.\\
(Intuitively, this means that every element in $T$ has exactly one
incoming arrow.)\\
\subheading{Definition 7.2.4 (Inverse)}
Let $f : S \rightarrow T$ be a function and let $f^{-1}$ be the inverse relation
of $f$ from $T$ to $S$. Then $f$ is bijective iff $f^{-1}$ is a function.\\
(Note: $f^{-1}$ is defined but not necessary a function. When $A \subseteq T$, $f^{-1}(A)$ means finding all the preimages of each image in $A$, and this is not a function if the $f$ is not bijective.)\\
\subheading{Definition 7.3.1 (Composition)}
Let $f : S \rightarrow T$, $g: T \rightarrow U$ be functions. The composition of
$f$ and $g$ denoted $g \circ f$ is a function from $S$ to $U$.\\
\subheading{Definition 7.3.2 (Identity)}
The identity function on a set $A$, $\mathcal{I}_A$ is defined by,
$$\forall x \in A(\mathcal{I}_A(x) = x)$$
\subheading{Proposition 7.3.3}
Let $f : A \rightarrow A$ be an injective function of A. Then $f^{-1} \circ f =
\mathcal{I}_A$.\\
\subheading{Inclusive Map}
Let $B$ be a subset of A. Then function $\iota^A_B: B \rightarrow A; b \mapsto b$ is called the \textbf{inclusive map} of $B$ in $A$
\subheading{Equality of Functions}
Two functions $f$ and $g$ are \textbf{equal}, denoted $f = g$, iff:
\begin{itemize}
\item the domains of $f$ and $g$ are equal;
\item the codomains of $f$ and $g$ are equal;
\item $f(x) = g(x)$ for all $x$ in their domains
\end{itemize}
\subheading{Properties of Composite Functions}
Let $f: A \rightarrow B, g: B \rightarrow C \text{ and } h: C \rightarrow D$ to be functions. Then
\begin{itemize}
\item $h \circ (g \circ f) = (h \circ g) \circ f$
\item If $f$ and $g$ are injective, $g \circ f$ is injective.
\item If $f$ and $g$ are surjective, $g \circ f$ is surjective.
\item If $g \circ f$ is injective, then $f$ is injective.
\item If $g \circ f$ is surjective, then $g$ is surjective.
\end{itemize}
\subheading{Cantor-Bernstein Theorem}
Let $f: A \rightarrow B, g: B \rightarrow A$ be injective functions. Then there exists a bijective function $h: A \rightarrow B$
\end{multicols*}
\end{document}