-
Notifications
You must be signed in to change notification settings - Fork 0
/
MA1521 Final.tex
371 lines (294 loc) · 12.9 KB
/
MA1521 Final.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
\documentclass[10pt,landscape]{article}
\usepackage[landscape]{geometry}
\input{math_header}
% Format inherited from <MA1101R Cheatsheet 17/18 Sem 1 Finals>
% Original document is by Tysng
% Original link: https://github.com/tysng/ma1521-cheatsheet
% PDE Removed given it is not examinable for 1920S1
% Turn off header and footer
\pagestyle{empty}
% Redefine section commands to use less space
\makeatletter
\renewcommand{\section}{\@startsection{section}{1}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%x
{\normalfont\large\bfseries}}
\renewcommand{\subsection}{\@startsection{subsection}{2}{0mm}%
{-1explus -.5ex minus -.2ex}%
{0.5ex plus .2ex}%
{\normalfont\normalsize\bfseries}}
\renewcommand{\subsubsection}{\@startsection{subsubsection}{3}{0mm}%
{-1ex plus -.5ex minus -.2ex}%
{1ex plus .2ex}%
{\normalfont\small\bfseries}}
\makeatother
% Define BibTeX command
\def\BibTeX{{\rm B\kern-.05em{\sc i\kern-.025em b}\kern-.08em
T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}
% print only section numbers
\setcounter{secnumdepth}{1}
\setlength{\parindent}{0pt}
\setlength{\parskip}{0pt plus 0.5ex}
%My Environments
\newtheorem{example}[section]{Example}
% -----------------------------------------------------------------------
\begin{document}
\raggedright
\footnotesize
\begin{multicols}{3}
% multicol parameters
% These lengths are set only within the two main columns
%\setlength{\columnseprule}{0.25pt}
\setlength{\premulticols}{1pt}
\setlength{\postmulticols}{1pt}
\setlength{\multicolsep}{1pt}
\setlength{\columnsep}{2pt}
\begin{flushleft}
\large{
\underline{MA1521 Cheat Sheet} \\
\texttt{by Howard Liu based on versions of Tysng} \\
AY2019/20 Semester 1}
\end{flushleft}
% ------------------------------ACTUAL CONTENT-----------------------------------
\section{MF26 Magic}
\subsection{Trigo}
\begin{gather*}
\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B \\
\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B \\
\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
\sin 2A = 2 \sin A \cos A \\
\cos 2A = \cos ^ 2 A - \sin ^ 2 A = 2\cos^2A - 1 = 1 - 2\sin^2A \\
\tan 2A = \frac{2 \tan A}{1- \tan^2 A} \\
\sin P + \sin Q = 2 \sin \frac{1}{2} (P + Q) \cos \frac{1}{2} (P - Q) \\
\sin P - \sin Q = 2 \cos \frac{1}{2} (P + Q) \sin \frac{1}{2} (P - Q) \\
\cos P + \cos Q = 2 \cos \frac{1}{2} (P + Q) \cos \frac{1}{2} (P - Q) \\
\cos P - \cos Q = -2 \sin \frac{1}{2} (P + Q) \sin \frac{1}{2} (P - Q) \\
\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c} \\
a^2 = b^2 + c^2 - 2bc \cos A
\end{gather*}
\subsection{Derivatives}
\begin{gather*}
\frac{d}{dx} \sin ^{-1} x = \frac{1}{\sqrt{1-x^2}} \\
\frac{d}{dx} \cos ^{-1} x = -\frac{1}{\sqrt{1-x^2}} \\
\frac{d}{dx} \tan ^{-1} x = \frac{1}{1+x^2} \\
\frac{d}{dx} \csc x = - \csc x \cot x \\
\frac{d}{dx} \sec x = \sec x \tan x \\
\frac{d}{dx} \tan x = \sec^2 x \\
\frac{d}{dx} \cot x = -\csc^2 x
\end{gather*}
\subsection{Integrals}
Take note of the absolute sign, and always remember to $+c$
\begin{gather*}
\int \frac{1}{x^2 + a^2} dx = \frac{1}{a} \tan ^{-1} (\frac{x}{a}) + c \\
\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin ^{-1} (\frac{x}{a}) + c \\
\int \frac{1}{x} dx = \ln \abs{x} + c \\
\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + c \\
\int x^n e^x dx = x^n e^x - n x^{n-1} e^x + n (n-1) x^{n-2}e^x - \dots \pm n! e^x + c
\end{gather*}
\section{Basics}
\subsection{Extreme Values}
Points where $f$ can have an extreme value:
\begin{itemize}
\item Interior point where $f'(x) = 0$
\item Interior points where $f'(x)$ doesn't exist
\item End points of the domain of $f$
\end{itemize}
\subsection{L'Hospital's Rule}
The $\frac{0}{0}$ form: (1) $f$ and $g$ are differentiable in a neighborhood of $x_0$,
(2) $f(x_0) = g(x_0) = 0$, (3) $g'(x) \neq 0$ except possibly at $x_0$
\begin{gather*}
\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{x\to x_0} \frac{f'(x)}{g'(x)}
\end{gather*}
E.g. $\lim_{x\to 0} \frac{3x - \sin x }{x} = \frac{3-\cos x }{1} \rvert_{x = 0} = 2$
The $\frac{\infty}{\infty}$ form: when $x \to a$, $f(x), g(x) \to \infty$,
and both differentiable,
\begin{gather*}
\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}
\end{gather*}
Else, change to these two forms. (e.g $\lim_{x\to 0^+} x \cot x = \lim_{x\to 0^+} \frac{x}{\tan x}
= \lim_{x\to 0^+} \frac{1}{\sec^2 x} = 1$ )
\subsection{Fundamental Theorem of Calculus}
\begin{gather*}
\frac{d}{d\Box} \int_{c}^{\Box} f(t) dt = f(\Box)
\end{gather*}
\section{Series}
\subsection{Geometric Series}
Sum: $S_n = a \frac{1-r^n}{1-r}$, $r\neq 1$
Ratio test: $\lim_{n\to\infty} = \abs{\frac{a_{n+1}}{a_n}} = \rho$;
\begin{enumerate}
\item $\rho < 1$: converge;
\item $\rho > 1$: diverge;
\item $\rho = 1$, no conclusion;
\end{enumerate}
For convergent series: $S_n \to \frac{a}{1-r}$
\subsection{Power Series}
$\sum_{n = 0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \ldots + c_n(x-a)^n + \ldots$, where $a$ is the center of the power series
Convergence: $n\to\infty, S_n \to k$
\begin{enumerate}
\item $\sum c_n(x-a)^n$ converges at $x=a$ and diverges elsewhere
\item $h \in \mathbb{Z}$ that the series only converges in $(a-h, a + h)$
\item converges for every $x$
\end{enumerate}
\subsection{Finding Radius of Convergence}
Apply ratio test and find
\begin{gather*}
M = \lim_{n\to\infty} \abs{\frac{u_{n+1}}{u_n}}
M < 1
\end{gather*}
and transform it to the form of $\abs{x-a} < b$; $a$ is the center, $b$ is the RoC
Or, if the series converges for all $x$, the RoC is $\infty$; if it only converges at $a$, the RoC is 0;
Some magic:
\begin{gather*}
\frac{1}{1-\Box} = \sum_{n = 0 }^{\infty} \Box^n, \abs{\Box} < 1
\end{gather*}
\subsection{Taylor Series}
of $f$ at $a$:
\begin{gather*}
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \ldots \\
+ \frac{f^{(n)}(a)}{n!} (x-a)^n +\ldots \\
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \\
\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x ^{2n+1}}{(2n+1)!} \\
\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x ^{2n}}{(2n)!} \\
\ln (1+x )= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n} \\
\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}
\end{gather*}
\subsection{Finding a specific high order derivative}
\begin{enumerate}
\item given $\int f dx$
\item evaluate f in polynomial form and integrate the polynomial form
\item Compare the coefficient with the item that contains $f^{(100)}(0)$ in the Taylor expansion
\end{enumerate}
\subsection{Rules of Series}
\begin{gather*}
\int \sum_{n=0}^{\infty} \Box dx = \sum_{n=0}^{\infty} \int \Box dx \\
\frac{d}{dx} \sum_{n=0}^{\infty} \Box = \sum_{n=0}^{\infty} \frac{d}{dx} \Box \\
x^k e^x = x^k \sum_{n=0}^{\infty} \frac{x^n}{n!} = \sum_{n=0}^{\infty} \frac{x^{n+k}}{n!} \text{ (Note: $x^k$ is a constant in the series)}
\end{gather*}
\section{Vectors}
Angle between two vectors: $\cos \theta = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\norm{\vec{v_1}} \norm{\vec{v_2}}}$ \\
Perpendicular vectors: $\vec{v_1} \cdot \vec{v_2} = 0$
\section{Partial Differentiation}
\begin{gather*}
f_{xy} (a,b) = f_{yx} (a,b) \\
\frac{dz}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} \\
\end{gather*}
\subsection{Directional Derivative}
For \textbf{unit vector} $u = u_1 \vec{i} + u_2 \vec{j}$, we have:
$$D_{\vec{u}}f(a,b) = f_x(a, b) \cdot u_1 + f_y(a,b) \cdot u_2$$
Gradient Vector:
$$\nabla f = f_x \vec{i} + f_y \vec{j}$$
Relation between $D_{\vec{u}}f(a,b)$ and $\nabla f$:
$$D_{\vec{u}}f(a,b) = \nabla f(a,b) \cdot \vec{u} = \norm{\nabla f(a,b)} \cos \theta$$
Some characteristics:
\begin{itemize}
\item $f$ increases most rapidly in $\nabla f(a,b)$ and decreases most rapidly in $ -\nabla f(a,b)$.
\item Max value of $D_{\vec{u}}f(a,b) = \norm{\nabla f(a,b)}$ when $\vec{u}$ and $\nabla f$ in the same direction, since $\cos \theta = 0$
\item Increment in $f$ (approx.): $\Delta f \approx [D_{\vec{u}} f(\vec{p})] (\Delta t)$, where $p$ is the point to measure the increment and $u$ is the unit vector of direction.
\end{itemize}
\subsection{Finding $D_{\vec{u}}f$}
\begin{enumerate}
\item Find the direction $\vec{p}$
\item Find the unit vector $\vec{u} = \frac{\vec{p}}{\norm{\vec{p}}}$
\item Find $\nabla f$, then find $D_{\vec{u}} f = \nabla f \cdot \vec{u}$
\end{enumerate}
\subsection{Critical Points}
A point of $f$ that satisfies either is a critical point:
\begin{enumerate}
\item $f_x (a,b) = 0$ and $f_y(a,b) = 0$
\item $f_x (a,b)$ or $f_y(a,b)$ doesn't exist
\end{enumerate}
Perform Second Derivative Test: let $f_x(a,b) = 0$ and $f_y(a,b) = 0$
$$ D = f_{xx}(a,b) f_{yy} (a,b) - f_{xy} (a,b)^2 $$
\begin{itemize}
\item $D > 0, f_{xx} >0$, f has a local minimum at (a,b)
\item $D > 0, f_{xx} <0$, f has a local maximum at (a,b)
\item $D < 0$, f has a saddle point at (a,b)
\item $D = 0$, no conclusion
\end{itemize}
\section{Double Integrals}
For a region $R$ s.t. $a \leq x \leq b$ and $c \leq y \leq d$, volume is given by:
\begin{gather*}
\int\!\int_R\! f(x, y)\, \mathrm{d}A = \int_c^d\!\int_a^b\! f(x, y)\, \mathrm{d}x \mathrm{d}y = \int_a^b\!\int_c^d\! f(x, y)\, \mathrm{d}y \mathrm{d}x
\end{gather*}
if $f(x, y) = g(x)h(y)$,
then $$\int\!\int_R f(x,y) \, \mathrm{d}A = (\int_a^b\!g(x)\, \mathrm{d}x) (\int_c^d\!h(y)\, \mathrm{d}y)$$
\subsection{Rectangular Regions}
Express horizontal/vertical bounds as a function $g(x)$ or $h(y)$ \\
Type A(top and bottom are curves)
$$
\int_a^b\!
\left [
\int_{g_1(x)}^{g_2(x)}\!f(x, y)\, \mathrm{d}y
\right ] \mathrm{d}x $$
Type B(left and right are curves) $$\int_c^d\!
\left [
\int_{h_1(y)}^{h_2(y)}\!f(x, y)\, \mathrm{d}x
\right ] \mathrm{d}y$$
\subsection{Polar Coordinates}
$R$: $a \leq r \leq b$, $\alpha \leq \theta \leq \beta$
$$
\int\!\int_R\! f(x, y)\, \mathrm{d}A =
\int_\alpha^\beta\!\int_a^b\!f(r\cos\theta, r\sin\theta)r\, \mathrm{d}r\mathrm{d}\theta
$$
\subsection{Surface Area}
$$S = \int\!\int_R\! \sqrt{(\frac{\partial z}{\partial x})^2 + (\frac{\partial z}{\partial y})^2 + 1 }\, \mathrm{d}A$$
\section{Ordinary Differential Equation}
\subsection{Separable Equations}
\begin{gather*}
M(x) - N(y) y' = 0 \implies \int M(x) dx = \int N(y) dy + c
\end{gather*}
\subsection{Reduction to Separable Form}
Let $v = y / x \implies y = xv \rightarrow y' = v + xv'$, transform equations of $y' = g(\frac{y}{x})$
to $v + xv' = g(v) $ such that
\begin{gather*}
\frac{dv}{g(v) - v} = \frac{dx}{x}
\end{gather*}
Similarly, $y' = f(ax + by + c)$ can be solved by $u = ax + by + c$
\subsection{Linear First Order ODE}
To solve $y' + Py = Q$: find integration factor
$$R = e^{\int P dx}$$
Then, answer $$y = \frac{1}{R} \int RQ dx$$
\subsection{Reduction to Linear Form}
A Bernoulli equation: $y' + P(x)y = Q(x) y^n$, where $n \in \mathbb{R}$; \\
(When $n = -1$, try Reduction to Separable Form)
To solve it, let $v = y^{1-n}$; \\
Find and express $dv / dx$ in $dy / dx$; find $dy/dx$ and sub that in original equation; transform into
$$v' + (1 - n)Pv = Q(1-n)$$
and solve the linear ODE.
\subsection{Homogeneous Linear Second Order DE}
For $y'' + a y' + by = 0$, the characteristic equation is $\lambda^2 + a \lambda + b = 0$
Find $\Delta = a ^2 -4b$:
\begin{enumerate}
\item $\Delta > 0$, $y = c_1e^{\lambda_1x} + c_2e^{\lambda_2x}$
\item $\Delta = 0$, $y = (c_1 + c_2 x) e^{-\frac{ax}{2}} $
\item $\Delta < 0$, it has two complex roots;$ \lambda_1 = \alpha + \beta i, \lambda_2 = \alpha -\beta i$; $y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x$
\end{enumerate}
where,
\begin{gather*}
\lambda_1 = \frac{1}{2} (-a+\sqrt{a^2-4b}) \\
\lambda_2 = \frac{1}{2} (-a-\sqrt{a^2-4b})
\end{gather*}
\section{Modelling}
\subsection{Population Growth}
Malthus's Model: not an accurate representation
\begin{gather*}
\frac{dN}{dt} = kN, k = B - D \\
N(t) = N_0 e^{kt}
\end{gather*}
\subsection{Logistic Model}
Let $D = sN$, where $s$ is a constant and $B$ is birth rate per capita:
$$ \frac{dN}{dt} = BN - DN = BN - sN^2 $$
The curve approaches carrying capacity $N = B/S$; point of inflection is at $N = B/2s$
$$ N = \frac{N_{\infty}}{1 + (\frac{N_{\infty}}{N_0} - 1) e^{-Bt}}, N_{\infty} = \frac{B}{s} $$
\subsection{Harvesting}
Let $E$ is fish caught per year, similar to the above model:
$$\frac{dN}{dt} = BN - sN^2 - E$$
Desirable result: $E < \frac{B^2}{4s}$, approaches the second root $\beta_2 = \frac{B + \sqrt{B^2 - 4Es}}{2s}$, when $\frac{dN}{dt} = 0$
\subsection{Strategies}
\begin{itemize}
\item When given $dx/dt$, find $x$ that $dx/dt = 0$, draw out the axis, determine the sign of $dx/dt$ within
each region, and find the flow (+ to the right, - to the left)
\item To find E, draw the graph without E and find the line of symmetry; use the product of the roots to find E;
\end{itemize}
\end{multicols}
\end{document}