-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathchat_app.py
239 lines (200 loc) · 9.65 KB
/
chat_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
chat_app.py
"""
import base64
import os
import streamlit as st
from openai import OpenAI
from openai.types.beta.assistant_stream_event import (
ThreadRunStepCreated,
ThreadRunStepDelta,
ThreadRunStepCompleted,
ThreadMessageCreated,
ThreadMessageDelta
)
from openai.types.beta.threads.text_delta_block import TextDeltaBlock
from openai.types.beta.threads.runs.tool_calls_step_details import ToolCallsStepDetails
from openai.types.beta.threads.runs.code_interpreter_tool_call import (
CodeInterpreterOutputImage,
CodeInterpreterOutputLogs
)
# Set page config
st.set_page_config(page_title="DAVE",
layout='wide')
# Get secrets
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
ASSISTANT_ID = st.secrets["OPENAI_ASSISTANT_ID"]
# Initialise the OpenAI client, and retrieve the assistant
client = OpenAI(api_key=OPENAI_API_KEY)
assistant = client.beta.assistants.retrieve(ASSISTANT_ID)
# Apply custom CSS
st.html("""
<style>
#MainMenu {visibility: hidden}
#header {visibility: hidden}
#footer {visibility: hidden}
.block-container {
padding-top: 3rem;
padding-bottom: 2rem;
padding-left: 3rem;
padding-right: 3rem;
}
</style>
""")
# Initialise session state
for session_state_var in ["file_uploaded"]:
if session_state_var not in st.session_state:
st.session_state[session_state_var] = False
# Moderation check
def moderation_endpoint(text) -> bool:
"""
Checks if the text is triggers the moderation endpoint
Args:
- text (str): The text to check
Returns:
- bool: True if the text is flagged
"""
response = client.moderations.create(input=text)
return response.results[0].flagged
# UI
st.subheader("🔮 DAVE: Data Analysis & Visualisation Engine")
file_upload_box = st.empty()
upload_btn = st.empty()
# Upload a file
# File Upload
if not st.session_state["file_uploaded"]:
st.session_state["files"] = file_upload_box.file_uploader("Please upload your dataset(s)",
accept_multiple_files=True,
type=["csv"])
if upload_btn.button("Upload"):
st.session_state["file_id"] = []
# Upload the file
for file in st.session_state["files"]:
oai_file = client.files.create(
file=file,
purpose='assistants'
)
# Append the file ID to the list
st.session_state["file_id"].append(oai_file.id)
print(f"Uploaded new file: \t {oai_file.id}")
st.toast("File(s) uploaded successfully", icon="🚀")
st.session_state["file_uploaded"] = True
file_upload_box.empty()
upload_btn.empty()
# The re-run is to trigger the next section of the code
st.rerun()
if st.session_state["file_uploaded"]:
# Create a new thread
if "thread_id" not in st.session_state:
thread = client.beta.threads.create()
st.session_state.thread_id = thread.id
print(st.session_state.thread_id)
# Update the thread to attach the file
client.beta.threads.update(
thread_id=st.session_state.thread_id,
tool_resources={"code_interpreter": {"file_ids": [file_id for file_id in st.session_state.file_id]}}
)
# Local history
if "messages" not in st.session_state:
st.session_state.messages = []
# UI
for message in st.session_state.messages:
with st.chat_message(message["role"]):
for item in message["items"]:
item_type = item["type"]
if item_type == "text":
st.markdown(item["content"])
elif item_type == "image":
for image in item["content"]:
st.html(image)
elif item_type == "code_input":
with st.status("Code", state="complete"):
st.code(item["content"])
elif item_type == "code_output":
with st.status("Results", state="complete"):
st.code(item["content"])
if prompt := st.chat_input("Ask me a question about your dataset"):
if moderation_endpoint(prompt):
st.toast("Your message was flagged. Please try again.", icon="⚠️")
st.stop
st.session_state.messages.append({"role": "user",
"items": [
{"type": "text",
"content": prompt
}]})
client.beta.threads.messages.create(
thread_id=st.session_state.thread_id,
role="user",
content=prompt
)
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
stream = client.beta.threads.runs.create(
thread_id=st.session_state.thread_id,
assistant_id=ASSISTANT_ID,
tool_choice={"type": "code_interpreter"},
stream=True
)
assistant_output = []
for event in stream:
print(event)
if isinstance(event, ThreadRunStepCreated):
if event.data.step_details.type == "tool_calls":
assistant_output.append({"type": "code_input",
"content": ""})
code_input_expander= st.status("Writing code ⏳ ...", expanded=True)
code_input_block = code_input_expander.empty()
if isinstance(event, ThreadRunStepDelta):
if event.data.delta.step_details.tool_calls[0].code_interpreter is not None:
code_interpretor = event.data.delta.step_details.tool_calls[0].code_interpreter
code_input_delta = code_interpretor.input
if (code_input_delta is not None) and (code_input_delta != ""):
assistant_output[-1]["content"] += code_input_delta
code_input_block.empty()
code_input_block.code(assistant_output[-1]["content"])
elif isinstance(event, ThreadRunStepCompleted):
if isinstance(event.data.step_details, ToolCallsStepDetails):
code_interpretor = event.data.step_details.tool_calls[0].code_interpreter
if code_interpretor.outputs is not None:
code_interpretor_outputs = code_interpretor.outputs[0]
code_input_expander.update(label="Code", state="complete", expanded=False)
# Image
if isinstance(code_interpretor_outputs, CodeInterpreterOutputImage):
image_html_list = []
for output in code_interpretor.outputs:
image_file_id = output.image.file_id
image_data = client.files.content(image_file_id)
# Save file
image_data_bytes = image_data.read()
with open(f"images/{image_file_id}.png", "wb") as file:
file.write(image_data_bytes)
# Open file and encode as data
file_ = open(f"images/{image_file_id}.png", "rb")
contents = file_.read()
data_url = base64.b64encode(contents).decode("utf-8")
file_.close()
# Display image
image_html = f'<p align="center"><img src="data:image/png;base64,{data_url}" width=600></p>'
st.html(image_html)
image_html_list.append(image_html)
assistant_output.append({"type": "image",
"content": image_html_list})
# Console log
elif isinstance(code_interpretor_outputs, CodeInterpreterOutputLogs):
assistant_output.append({"type": "code_output",
"content": ""})
code_output = code_interpretor.outputs[0].logs
with st.status("Results", state="complete"):
st.code(code_output)
assistant_output[-1]["content"] = code_output
elif isinstance(event, ThreadMessageCreated):
assistant_output.append({"type": "text",
"content": ""})
assistant_text_box = st.empty()
elif isinstance(event, ThreadMessageDelta):
if isinstance(event.data.delta.content[0], TextDeltaBlock):
assistant_text_box.empty()
assistant_output[-1]["content"] += event.data.delta.content[0].text.value
assistant_text_box.markdown(assistant_output[-1]["content"])
st.session_state.messages.append({"role": "assistant", "items": assistant_output})