-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
62 lines (53 loc) · 2.22 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Importing the Required Libraries
import streamlit as st
import pickle
import requests
# Loading the necessary Files
movies = pickle.load(open('movies.pkl', 'rb'))
movie_list = movies.title
similarity = pickle.load(open('similarity.pkl', 'rb'))
# Creating the function to get the poster path of a movie given a movie id
def fetch_poster(movie_id):
url = "https://api.themoviedb.org/3/movie/{}?language=en-US".format(movie_id)
headers = {
"accept": "application/json",
"Authorization": "Bearer eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOiI2MjcwZGY1ZjUyYzFiZDU3ZTY5YzE3ZjgwNWI1OTllYiIsInN1YiI6IjY2MTUwN2M4YTZhNGMxMDE4NmJlYzA0NyIsInNjb3BlcyI6WyJhcGlfcmVhZCJdLCJ2ZXJzaW9uIjoxfQ.CSxoWYoWnqPEDjctHsr0PRwMV9lOgiOsi-h14jpw4I8"
}
response = requests.get(url, headers=headers)
data = response.json()
return 'https://image.tmdb.org/t/p/w500/' + data ['poster_path']
# Creating a function for fetching Recommended Movie Names and their Poster Path using the fetch_poster function
def recommend(movie):
movie_index = movies[movies['title'] == movie].index[0]
distances = similarity[movie_index]
movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
recommended_movies = []
recommended_movies_posters = []
for i in movies_list:
movie_id = movies.iloc[i[0]].movie_id
recommended_movies.append(movies.iloc[i[0]].title)
recommended_movies_posters.append(fetch_poster(movie_id))
return recommended_movies, recommended_movies_posters
# Title of the Application
st.title('Movie Recommender System')
# Putting the Select Box to choose Movies
selected_movie = st.selectbox('Select Your Movie', movie_list)
# Creating the Button and its functionality using the recommend function
if st.button('Recommend Me Movies like the above: '):
names, posters = recommend(selected_movie)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(names[0])
st.image(posters[0])
with col2:
st.text(names[1])
st.image(posters[1])
with col3:
st.text(names[2])
st.image(posters[2])
with col4:
st.text(names[3])
st.image(posters[3])
with col5:
st.text(names[4])
st.image(posters[4])