Skip to content

BatchSpecific

Julien Mazars edited this page Jan 15, 2016 · 19 revisions

Batch Specific UI

When an experiment of type Batch is run, a dedicated UI is displayed, depending on the parameters to explore and of the exploration methods.

Table of contents

Information bar

In batch mode, the top information bar displays 3 distinct information (instead of only the cycle number in the GUI experiment):

  • Run: the run number. One run corresponds to X executions of simulation with one given parameters values (X is an integer given by the facet repeat in the definition of the exploration method);
  • Simulation: the number of replications done (and the number of replications specified with the repeat facet);
  • Cycle: the cycle number in the current simulation.

images/batch_Information_bar.png

Batch UI

The parameters view is also a bit different in the case of a Batch UI. The following interface is generated given the following model part:

experiment Batch type: batch repeat: 2 keep_seed: true until: (food_gathered = food_placed) or (time > 400) {
   parameter 'Size of the grid:' var: gridsize init: 75 unit: 'width and height';
   parameter 'Number:' var: ants_number init: 200 unit: 'ants';
   parameter 'Evaporation:' var: evaporation_rate among: [0.1, 0.2, 0.5, 0.8, 1.0] unit: 'rate every cycle (1.0 means 100%)';
   parameter 'Diffusion:' var: diffusion_rate min: 0.1 max: 1.0 unit: 'rate every cycle (1.0 means 100%)' step: 0.3;

   method exhaustive maximize: food_gathered;

images/batch_Parameters_pane.png

The interface summarizes all model parameters and the parameters given to the exploration method:

  • Environment and Population: displays all the model parameters that should not be explored;
  • Parameters to explore: the parameters to explore are the parameters defined in the experiment with a range of values (with among facet or min, max and step facets);
  • Exploration method: it summarizes the Exploration method and the stop condition. For exhaustive method it also evaluates the parameter space. For other methods, it also displays the method parameters (e.g. mutation or crossover probability...). Finally the best fitness found and the last fitness found are displayed (with the associated parameter set).
  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Model Section
    1. Runtime Concepts
    2. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Diffusion
  3. Using Database
  4. Using FIPA ACL
  5. Using BDI with BEN
  6. Using Driving Skill
  7. Manipulate dates
  8. Manipulate lights
  9. Using comodel
  10. Save and restore Simulations
  11. Using network
  12. Headless mode
  13. Using Headless
  14. Writing Unit Tests
  15. Ensure model's reproducibility
  16. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally