Skip to content
Alexis Drogoul edited this page Apr 16, 2023 · 121 revisions

GAMA

GAMA is an easy-to-use open source modeling and simulation environment for creating spatially explicit agent-based simulations. It has been developed to be used in any application domain: urban mobility, climate change adaptation, epidemiology, disaster evacuation strategy design, urban planning, are some of the application domains in which GAMA users are involved and for which they create models.

The generality of the agent-based approach advocated by GAMA is accompanied by a high degree of openness, which is manifested, for example, in the development of plugins designed to meet specific needs, or by the possibility of calling GAMA from other software or languages (such as R or Python). This openness allows the more than 2000 users of GAMA to use it for a wide variety of purposes: scientific simulation, scenario exploration and visualization, negotiation assistance, serious games, mediation or communication tools, the possibilities are endless!

The latest version of GAMA, labeled 1.9.1, can be freely downloaded or built from source, and comes with hundreds of templates, tutorials, and extensive online documentation.

Data-driven models

The relevance of agent-based models depends largely on the quality of the data on which they are built and the ease with which they can access it. GAMA offers the possibility to load and manipulate easily GIS (Geographic Information System) data in the models, in order to make them the environment of artificial agents. It is also possible to directly import and use directly in models a large number of data types, such as CSV files, Shapefiles, OSM data, grids, images, SVG files, but also 3D files, such as 3DS or OBJ. GAMA also offers models the possibility to connect directly to databases (UsingDatabase) and to use external tools and environments such as R.

Data-driven models

High-level and intuitive agent-based language

Thanks to GAML, its high-level and intuitive language, GAMA has been developed to be used by non-computer scientists: one can actually create a simulated world, declare species of agents, provide them with behaviors, and display them and their interactions in less than 10 minutes. GAML also offers all the power needed by advanced modellers: being an agent-oriented language coded in Java, it provides the possibility to build integrated models with several paradigms of modeling, to explore their parameters space and calibrate them and to run virtual experiments, all of these without leaving the platform.

GAML can be learnt easily by following first the step by step tutorial and then exploring the other tutorials and pedagogical resources available throughout this site. Since 2007, the developers behind GAMA also provide a continuous support through the active mailing list. Finally, in addition to this online support, training sessions for specialised audiences, on topics such as "urban management", "epidemiology", "risk management" are also organised and delivered by GAMA developers and users.

Declarative user interface

The user interface for both writing models and running experiments is one of the strongest points of GAMA. The platform indeed provides the possibility to have multiple displays for the same model, add as many visual representations as needed for the agents and therefore highlight the elements of interest in the simulations easily and beautifully. Advanced 3D displays are provided with all the support required for realistic renderings. Of course, dedicated statements allow to easily define charts for more dashboard-like presentations.

During simulations, interactive features can be made available to inspect the population of agents, define user-controlled action panels, or interactions with the displays and external devices.

Declarative User Interface


Development Team

GAMA is developed by several teams under the umbrella of the IRD/SU international research unit UMMISCO:

Citing GAMA

If you use GAMA in your research and want to cite it (in a paper, presentation, whatever), please use this reference:

Taillandier, P., Gaudou, B., Grignard, A.,Huynh, Q.-N., Marilleau, N., P. Caillou, P., Philippon, D., & Drogoul, A. (2019). Building, composing and experimenting complex spatial models with the GAMA platform. Geoinformatica, (2019), 23 (2), pp. 299-322, [doi:10.1007/s10707-018-00339-6]

or you can choose to cite the website instead:

GAMA Platform website, http://gama-platform.org

A complete list of references (papers and PhD theses on or using GAMA) is available on the references page.

Acknowledgement

YourKit logo

YourKit supports open source projects with its full-featured Java Profiler. YourKit, LLC is the creator of YourKit Java Profiler and YourKit .NET Profiler, innovative and intelligent tools for profiling Java and .NET applications.

Creative Commons License
This page is licensed under a Creative Commons Attribution 4.0 International License.

  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Model Section
    1. Runtime Concepts
    2. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Diffusion
  3. Using Database
  4. Using FIPA ACL
  5. Using BDI with BEN
  6. Using Driving Skill
  7. Manipulate dates
  8. Manipulate lights
  9. Using comodel
  10. Save and restore Simulations
  11. Using network
  12. Headless mode
  13. Using Headless
  14. Writing Unit Tests
  15. Ensure model's reproducibility
  16. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally