Skip to content

PlayPool

Julius Bañgate edited this page Apr 15, 2023 · 5 revisions
Annotation 2023-04-15 183519_PlayPool

Path: Plugin models/Physics Engine/models/Play Pool.gaml

/**
* Name: Pool using Physics Engine
* Author: Arnaud Grignard (2012) --revised by Alexis Drogoul (2021)
* Description: This is a model that allows the user to play a (simplistic) game of pool in order to show how the physics engine works. It also
* demonstrates the effect of different physical properties (friction, restitution, etc.) 
*
* Tags: physics_engine, skill, 3d, spatial_computation, obstacle
*/
model pool3D

/**
 * The model is inheriting from 'physical_world' a special model species that provides access to the physics engine -- and the possibility
 * to manage physical agents. In this model, the world itself is not a physical agent but all the other agents (balls and walls) are 
 * automatically registered (thanks to the default value of 'true' of the variable 'automated_registration').
 */
global parent: physical_world {
	// The dynamics of the agents is a bit different if we use the native (3.0.x) or Java version (2.8.x) of Bullet
	bool use_native <- false;
	bool draw_aabb <- false;
	string library <- "bullet";
	//All the physical characteristics of the balls can be accessed here and modified at will by the user
	float ball_damping <- 0.05 min: 0.0 max: 1.0 on_change: {ask ball {damping<-ball_damping;}};
	float ball_restitution <- 0.8  min: 0.0 max: 1.0 on_change: {ask ball {restitution<-ball_restitution;}};
	float ball_friction <- 0.2  min: 0.0 max: 1.0 on_change: {ask ball {friction<-ball_friction;}};
	float wall_restitution <- 0.7  min: 0.0 max: 1.0 on_change: {ask wall {restitution<-wall_restitution;}};
	float wall_friction <- 0.2  min: 0.0 max: 1.0 on_change: {ask wall {friction<-wall_friction;}};
	float ground_friction <- 0.6  min: 0.0 max: 1.0 on_change: {ask ground {friction<-ground_friction;}};
	float strength <- 120.0  min: 0.0 max: 200.0;
	int width <- 200;
	int height <- 300;
	//Given that very few agents inhabit this world, the step is really small, so as to prevent the physical world to go too fast. 
	//The simulation itself is aligned with this number (see experiment.minimum_cycle_duration)
	float step <-1.0/120;
	//Gives access (or not) to an improved (but slower) detection collision algorithm
	bool better_collision_detection <- false;
	// Artificially high gravity to make sure that the balls stay on the ground
	point gravity <- {0,0,-20};


	//Physical Engine
	geometry shape <- rectangle(width, height);
	ball white;
	point target;

	init {

		float floor <- -4.0;
		float depth <- 4.0;
		create ground from: [
			box({width - 20, height - 24, depth}) at_location {width / 2, height / 2, floor}, 
			box({width - 20, 20, depth}) at_location {width / 2, 6, floor}, 
			box({width - 20, 20, depth}) at_location {width / 2, height - 6, floor}, 
			box({20, height / 2 - 18, depth}) at_location {6, height / 4 + 3, floor}, 
			box({20, height / 2 - 18, depth}) at_location {6, 3 * height / 4 - 3, floor}, 
			box({20, height / 2 - 18, depth}) at_location {width - 6, height / 4 + 3, floor}, 
			box({20, height / 2 - 18, depth}) at_location {width - 6, 3 * height / 4 - 3, floor}
		];
				
		float section <- 10.0;
		float z <- section + section/4;
		create wall from: [
			line([{0,height + section/2,z}, {width,height + section/2,z}], section/2), //down
			line([{0,-section/2,z}, {width,-section/2,z}], section/2), // up
			line([{-section/2,-section/2,z}, {-section/2,height + section/2, z}], section/2), // left
			line([{width+section/2,-section/2,z}, {width+section/2,height + section/2, z}], section/2) // right

		];
		
		create wall with: [inside::true] from: [
			box(width+3*section/2, section/2, section) at_location {width / 2, height + section/2, 0}, // down
			box(width+3*section/2, section/2, section) at_location {width / 2,  -section/2, 0}, // up
			box(section/2, height +  section, section) at_location {-section/2, height / 2, 0}, // left
			box(section/2, height + section, section) at_location {width + section/2, height / 2, 0} // right
		];

		
		do create_white_ball;

		int deltaI <- 0;
		int initX <- 75;
		int initY <- int(height / 8);
		int i <- 0;

		//Create the other balls for the pool
		create ball number: 15 {
			location <- {initX + (i - deltaI) * 10, initY, 0};
			i <- i + 1;
			color <- (i mod 2) = 0 ? #red :  #yellow;
			if (i in [5, 9, 12, 14]) {
				initX <- initX + 5;
				initY <- initY + 9;
				deltaI <- i;
			}

		}

	}
	
	action create_white_ball {
		create ball {
			location <- {width / 2, 4 * height / 5, 0};
			white <- self;
		}
	}

}

//Species representing the ground agents used for the computation of the forces, using the skill static_body
species ground skills: [static_body] {
	float friction <- ground_friction;
}

//Species representing the wall agents of the pool using the skill static_body
species wall skills: [static_body] {
	bool inside;
	float friction <- wall_friction;
	float restitution <- wall_restitution;	
	
	aspect default {
		if (inside) {
			draw shape color: (#darkgreen);
		} else {
			draw shape texture: "../images/wood.jpg";
		}
		
		if (draw_aabb) {draw aabb wireframe: true border: #lightblue;}

	}
}

//Species representing the ball agents, provided with dynamic_body capabilities (a mass, a velocity, damping ...)
species ball skills: [dynamic_body] {
	rgb color <- #white;
	float mass <-2.0;
	geometry shape <- sphere(5);
	float friction <- ball_friction;
	float restitution <- ball_restitution;
	float damping <- ball_damping;
    float angular_damping <- 0.0;
	float contact_damping <- 0.0;
	
	// If any ball falls or goes away, it is destroyed, except the white ball, replaced on the table
	reflex manage_location when: location.z < -20 {
		if (self = white) {
			ask world {
				do create_white_ball;
			}
			target <- nil;
		}
		do die;
	}

	aspect default {
		draw  sphere(5) color: color;
		if (draw_aabb) {draw aabb wireframe: true border: #lightblue;}

	}

}

experiment "Play !" type: gui autorun: true   {
	parameter "Ball Restitution" var: ball_restitution category: "Ball properties" ;
	parameter "Ball Damping (natural deceleration)" var: ball_damping category: "Ball properties" ;
	parameter "Ball Friction" var: ball_friction category: "Ball properties" ;
	parameter "Wall Restitution" var: wall_restitution category: "Wall properties" ;
	parameter "Wall Friction" var: wall_friction category: "Wall properties" ;
	parameter "Ground Friction" var: ground_friction category: "Ground properties";
	parameter "Strength" var: strength category: "Player properties";
	parameter "Draw bounding boxes" var: draw_aabb category: "General";
	
	// Ensure that the simulation does not go too fast
	float minimum_cycle_duration <- 1.0/120;
	
	action _init_ {
		// A trick to make sure the parameters are expanded and visible when the simulation is launched.
		bool previous <- gama.pref_experiment_expand_params;
		gama.pref_experiment_expand_params <- true;
		create simulation;
		gama.pref_experiment_expand_params <- previous;
	}
	
	output {
		display Pool type: 3d antialias: false axes: false{
			camera #default location: {100.0,400.0,300.0} target: {width/2,height/2,-20.0};
			light #ambient intensity: 180;
			light #default intensity: 180 direction: {0.5, 0.5, -1};
			graphics user {
				if (white != nil) and (target != nil) {
					draw line(white, target) color: #white end_arrow: 3;
				}
				if target = nil {
					draw "Choose a target" color: #white font: font("Helvetica", 30, #bold) at: location + {0, 0, 10} perspective: false anchor: #center;
				}
			}

			event #mouse_down  {
				target <- #user_location;
				float divisor <- distance_to(target, white.location);
				point direction <- (target - white.location) /divisor;
				// When the user hits the mouse, we apply an impulse to the while ball, in the direction of the target. 'velocity' could also be used here
				ask white {
					do apply impulse: {strength * direction.x * 4, strength * direction.y * 4, 0};
				}
			}
			event #mouse_move {
				target <- #user_location;	
			}
			species ground refresh: false {
				draw shape texture: image_file("../images/mat.jpg");
				if (draw_aabb) {draw aabb wireframe: true border: #lightblue;}
			}
			species wall refresh:false;
			species ball;
		}

	}

}
  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Model Section
    1. Runtime Concepts
    2. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Diffusion
  3. Using Database
  4. Using FIPA ACL
  5. Using BDI with BEN
  6. Using Driving Skill
  7. Manipulate dates
  8. Manipulate lights
  9. Using comodel
  10. Save and restore Simulations
  11. Using network
  12. Headless mode
  13. Using Headless
  14. Writing Unit Tests
  15. Ensure model's reproducibility
  16. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally