-
Notifications
You must be signed in to change notification settings - Fork 99
PredatorPrey_step8
This eighth step illustrates how to define and call actions and how to use conditional statements.
- Definition of more complex behaviors for prey and predator agents:
- The preys agents are moving to the cell containing the highest quantity of food.
- The predator agents are moving if possible to a cell that contains preys, otherwise to random cell.
We modify the basic_move
reflex of the generic_species
in order to give the prey
and predator
a more complex behaviors: instead of choosing a random vegetation cell in the neighborhood, the agents will choose a vegetation cell (still in the neighborhood) thanks to a choose_cell
action. This action will return an empty (nil
) value in the parent species and will be specialized for each species.
species generic_species {
...
reflex basic_move {
my_cell <- choose_cell();
location <- my_cell.location;
}
vegetation_cell choose_cell {
return nil;
}
...
}
We remind that an action is a capability available to the agents (what they can do). It is a block of statements that can be used and reused whenever needed.
- An action can accept arguments.
- An action can return a result (statement return).
There are two ways of calling an action: using a statement do
or as part of an expression:
- for actions that do not return a result:
do action_name (arg1: v1 arg2: v2);
do action_name (v1, v2);
- for actions that return a result (which is stored in
my_var
):
my_var <- action_name (arg1:v1, arg2:v2);
my_var <- action_name (v1, v2);
We specialize the choose_cell
action for the prey
species: the agent will choose the vegetation cell of the neighborhood (list my_cell.neighbors2
) that maximizes the quantity of food.
Note that GAMA offers numerous operators to manipulate lists and containers:
- Unary operators:
min
,max
,sum
... - Binary operators:
-
where
: returns a sub-list where all the elements verify the condition defined in the right operand. -
first_with
: returns the first element of the list that verifies the condition defined in the right operand. - ...
-
In the case of binary operators, each element (of the first operand list) can be accessed with the pseudo-variable each
.
Thus the choose_cell
action of the prey
species is defined by:
species prey parent: generic_species {
...
vegetation_cell choose_cell {
return (my_cell.neighbors2) with_max_of (each.food);
}
...
}
We specialize the choose_cell
species for the predator
species: the agent will choose, if possible, a vegetation cell of the neighborhood (list my_cell.neighbors2
) that contains at least a prey
agent; otherwise it will choose a random cell.
We use for this action the first_with
operator on the list of neighbor vegetation cells (my_cell.neighbors2
) with the following condition: the list of prey
agents contained in the cell is not empty. Note that we use the shuffle
operator to randomize the order of the list of the neighbor cells.
If all the neighbor cells are empty, then the agent chooses a random cell in the neighborhood (one_of (my_cell.neighbors2)
).
GAMA contains statements that allow executing blocks depending on some conditions:
if condition1 {...}
else if condition2{...}
...
else {...}
This statement means that if condition1 = true then the first block is executed; otherwise, if condition2 = true, then it is the second block, etc. When no conditions are satisfied and an else block is defined (it is optional), this latter is executed.
We then write the choose_cell
action as follows:
species predator parent: generic_species {
...
vegetation_cell choose_cell {
vegetation_cell my_cell_tmp <- shuffle(my_cell.neighbors2) first_with (!(empty (prey inside (each))));
if my_ell_tmp != nil {
return my_cell_tmp;
} else {
return one_of (my_cell.neighbors2);
}
}
...
}
Note there is ternary operator allowing to directly use a conditioned structure to evaluate a variable:
condition ? value1 : value2
if condition is true, then returns value1; otherwise, returns value2.
model prey_predator
global {
int nb_preys_init <- 200;
int nb_predators_init <- 20;
float prey_max_energy <- 1.0;
float prey_max_transfert <- 0.1 ;
float prey_energy_consum <- 0.05;
float predator_max_energy <- 1.0;
float predator_energy_transfert <- 0.5;
float predator_energy_consum <- 0.02;
float prey_proba_reproduce <- 0.01;
int prey_nb_max_offsprings <- 5;
float prey_energy_reproduce <- 0.5;
float predator_proba_reproduce <- 0.01;
int predator_nb_max_offsprings <- 3;
float predator_energy_reproduce <- 0.5;
int nb_preys -> {length (prey)};
int nb_predators -> {length (predator)};
init {
create prey number: nb_preys_init ;
create predator number: nb_predators_init ;
}
}
species generic_species {
float size <- 1.0;
rgb color ;
float max_energy;
float max_transfert;
float energy_consum;
float proba_reproduce ;
float nb_max_offsprings;
float energy_reproduce;
image_file my_icon;
vegetation_cell myCell <- one_of (vegetation_cell) ;
float energy <- (rnd(1000) / 1000) * max_energy update: energy - energy_consum max: max_energy ;
init {
location <- myCell.location;
}
reflex basic_move {
myCell <- choose_cell();
location <- myCell.location;
}
vegetation_cell choose_cell {
return nil;
}
reflex die when: energy <= 0 {
do die ;
}
reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
int nb_offsprings <- 1 + rnd(nb_max_offsprings -1);
create species(self) number: nb_offsprings {
myCell <- myself.myCell ;
location <- myCell.location ;
energy <- myself.energy / nb_offsprings ;
}
energy <- energy / nb_offsprings ;
}
aspect base {
draw circle(size) color: color ;
}
aspect icon {
draw my_icon size: 2 * size ;
}
aspect info {
draw square(size) color: color ;
draw string(energy with_precision 2) size: 3 color: #black ;
}
}
species prey parent: generic_species {
rgb color <- #blue;
float max_energy <- prey_max_energy ;
float max_transfert <- prey_max_transfert ;
float energy_consum <- prey_energy_consum ;
float proba_reproduce <- prey_proba_reproduce ;
int nb_max_offsprings <- prey_nb_max_offsprings ;
float energy_reproduce <- prey_energy_reproduce ;
file my_icon <- file("../images/predator_prey_sheep.png") ;
reflex eat when: myCell.food > 0 {
float energy_transfert <- min([max_transfert, myCell.food]) ;
myCell.food <- myCell.food - energy_transfert ;
energy <- energy + energy_transfert ;
}
vegetation_cell choose_cell {
return (myCell.neighbors) with_max_of (each.food);
}
}
species predator parent: generic_species {
rgb color <- #red ;
float max_energy <- predator_max_energy ;
float energy_transfert <- predator_energy_transfert ;
float energy_consum <- predator_energy_consum ;
list<prey> reachable_preys update: prey inside (myCell);
float proba_reproduce <- predator_proba_reproduce ;
int nb_max_offsprings <- predator_nb_max_offsprings ;
float energy_reproduce <- predator_energy_reproduce ;
file my_icon <- file("../images/predator_prey_wolf.png") ;
reflex eat when: ! empty(reachable_preys) {
ask one_of (reachable_preys) {
do die ;
}
energy <- energy + energy_transfert ;
}
vegetation_cell choose_cell {
vegetation_cell myCell_tmp <- shuffle(myCell.neighbors) first_with (!(empty (prey inside (each))));
if myCell_tmp != nil {
return myCell_tmp;
} else {
return one_of (myCell.neighbors);
}
}
}
grid vegetation_cell width: 50 height: 50 neighbors: 4 {
float maxFood <- 1.0 ;
float foodProd <- (rnd(1000) / 1000) * 0.01 ;
float food <- (rnd(1000) / 1000) max: maxFood update: food + foodProd ;
rgb color <- rgb(int(255 * (1 - food)), 255, int(255 * (1 - food))) update: rgb(int(255 * (1 - food)), 255, int(255 *(1 - food))) ;
list<vegetation_cell> neighbors <- (self neighbors_at 2);
}
experiment prey_predator type: gui {
parameter "Initial number of preys: " var: nb_preys_init min: 0 max: 1000 category: "Prey" ;
parameter "Prey max energy: " var: prey_max_energy category: "Prey" ;
parameter "Prey max transfert: " var: prey_max_transfert category: "Prey" ;
parameter "Prey energy consumption: " var: prey_energy_consum category: "Prey" ;
parameter "Initial number of predators: " var: nb_predators_init min: 0 max: 200 category: "Predator" ;
parameter "Predator max energy: " var: predator_max_energy category: "Predator" ;
parameter "Predator energy transfert: " var: predator_energy_transfert category: "Predator" ;
parameter "Predator energy consumption: " var: predator_energy_consum category: "Predator" ;
parameter 'Prey probability reproduce: ' var: prey_proba_reproduce category: 'Prey' ;
parameter 'Prey nb max offsprings: ' var: prey_nb_max_offsprings category: 'Prey' ;
parameter 'Prey energy reproduce: ' var: prey_energy_reproduce category: 'Prey' ;
parameter 'Predator probability reproduce: ' var: predator_proba_reproduce category: 'Predator' ;
parameter 'Predator nb max offsprings: ' var: predator_nb_max_offsprings category: 'Predator' ;
parameter 'Predator energy reproduce: ' var: predator_energy_reproduce category: 'Predator' ;
output {
display main_display {
grid vegetation_cell lines: #black ;
species prey aspect: icon ;
species predator aspect: icon ;
}
display info_display {
grid vegetation_cell lines: #black ;
species prey aspect: info ;
species predator aspect: info ;
}
monitor "Number of preys" value: nb_preys;
monitor "Number of predators" value: nb_predators;
}
}
- Installation and Launching
- Workspace, Projects and Models
- Editing Models
- Running Experiments
- Running Headless
- Preferences
- Troubleshooting
- Introduction
- Manipulate basic Species
- Global Species
- Defining Advanced Species
- Defining GUI Experiment
- Exploring Models
- Optimizing Model Section
- Multi-Paradigm Modeling
- Manipulate OSM Data
- Diffusion
- Using Database
- Using FIPA ACL
- Using BDI with BEN
- Using Driving Skill
- Manipulate dates
- Manipulate lights
- Using comodel
- Save and restore Simulations
- Using network
- Headless mode
- Using Headless
- Writing Unit Tests
- Ensure model's reproducibility
- Going further with extensions
- Built-in Species
- Built-in Skills
- Built-in Architecture
- Statements
- Data Type
- File Type
- Expressions
- Exhaustive list of GAMA Keywords
- Installing the GIT version
- Developing Extensions
- Introduction to GAMA Java API
- Using GAMA flags
- Creating a release of GAMA
- Documentation generation