Skip to content

PredatorPrey_step8

benoitgaudou edited this page Aug 8, 2019 · 11 revisions

8. Complex Behavior

This eighth step Illustrates how to define and call actions and how to use conditional statements.

Formulation

  • Definition of more complex behaviors for prey and predator agents:
    • The preys agents are moving to the cell containing the highest quantity of food
    • The predator agents are moving if possible to a cell that contains preys; otherwise random cell

Model Definition

parent species

We modify the basic_move reflex of the generic_species in order to give the prey and predator a more complex behaviors: instead of choose a random vegetation cell in the neighborhood, the agent will choose a vegetation cell (still in the neighborhood) thanks to a choose_cell action. This action will be specialized for each species.

   species generic_species {
        ...
        reflex basic_move {
		myCell <- choose_cell();
		location <- myCell.location; 
	} 
	
	vegetation_cell choose_cell {
		return nil;
	}
        ...
   }

We remind that an action is a capability available to the agents of a species (what they can do). It is a block of statements that can be used and reused whenever needed.

  • An action can accept arguments.
  • An action can return a result (statement return)

There are two ways to call an action: using a statement or as part of an expression

  • for actions that do not return a result:
do action_name (arg1: v1 arg2: v2);
do action_name (v1, v2);
  • for actions that return a result (which is stored in my_var):
my_var <- action_name (arg1:v1, arg2:v2);
my_var <- action_name (v1, v2);

prey species

We specialize the choose_cell species for the prey species: the agent will choose the vegetation cell of the neighborhood (list myCell.neighbors) that maximizes the quantity of food.

Note that GAMA offers numerous operators to manipulate lists and containers:

  • Unary operators : min, max, sum...
  • Binary operators :
    • where : returns a sub-list where all the elements verify the condition defined in the right operand.
    • first_with : returns the first element of the list that verifies the condition defined in the right operand.
    • ...

In the case of binary operators, each element (of the first operand list) can be accessed with the keyword each

Thus the choose_cell action of the prey species is defined by:

   species prey parent: generic_species {
      ...  
      vegetation_cell choose_cell {
	  return (myCell.neighbors) with_max_of (each.food);
      }
      ...
   }

predator species

We specialize the choose_cell species for the predator species: the agent will choose, if possible, a vegetation cell of the neighborhood (list myCell.neighbors) that contains at least a prey agent; otherwise it will choose a random cell.

We use for this action the first_with operator on the list neighbor vegetation cells (myCell.neighbors) with the following condition: the list of prey agents contained in the cell is not empty. Note that we use the shuffle operator to randomize the order of the list of neighbor cell.

If all the neighbor cells are empty (myCell_tmp = nil, nil is the null value), then the agent choosse a random cell in the neighborhood (one_of (myCell.neighbors)).

GAMA contains statements that allow to execute blocks depending on some conditions:

   if condition1 {...} 
   else if condition2{...} 
   ... 
   else {...} 

This statement means that if condition1 = true then the first block is executed; otherwise if condition2 = true, then it is the second block, etc. When no conditions are satisfied and an else block is defined (it is optional), this latter is executed.

We then write the choose_cell action as follows:

   species predator parent: generic_species {
      ...
      vegetation_cell choose_cell {
	  vegetation_cell myCell_tmp <- shuffle(myCell.neighbors) first_with (!(empty (prey inside (each))));
	  if myCell_tmp != nil {
		return myCell_tmp;
	  } else {
		return one_of (myCell.neighbors);
	  } 
      }
      ...
   }

Note there is ternary operator allowing to directly use a condition structure to evaluate a variable:

   condition ? value1 : value2

if condition is true, then returns value1; otherwise, returns value2.

Complete Model

model prey_predator

global {
	int nb_preys_init <- 200;
	int nb_predators_init <- 20;
	float prey_max_energy <- 1.0;
	float prey_max_transfert <- 0.1 ;
	float prey_energy_consum <- 0.05;
	float predator_max_energy <- 1.0;
	float predator_energy_transfert <- 0.5;
	float predator_energy_consum <- 0.02;
	float prey_proba_reproduce <- 0.01;
	int prey_nb_max_offsprings <- 5; 
	float prey_energy_reproduce <- 0.5; 
	float predator_proba_reproduce <- 0.01;
	int predator_nb_max_offsprings <- 3;
	float predator_energy_reproduce <- 0.5;
	
	int nb_preys -> {length (prey)};
	int nb_predators -> {length (predator)};
	
	init {
		create prey number: nb_preys_init ; 
		create predator number: nb_predators_init ;
	}
}

species generic_species {
	float size <- 1.0;
	rgb color  ;
	float max_energy;
	float max_transfert;
	float energy_consum;
	float proba_reproduce ;
	float nb_max_offsprings;
	float energy_reproduce;
	image_file my_icon;
	vegetation_cell myCell <- one_of (vegetation_cell) ;
	float energy <- (rnd(1000) / 1000) * max_energy  update: energy - energy_consum max: max_energy ;
	
	init {
		location <- myCell.location;
	}
		
	reflex basic_move {
		myCell <- choose_cell();
		location <- myCell.location; 
	} 
	
	vegetation_cell choose_cell {
		return nil;
	}
		
	reflex die when: energy <= 0 {
		do die ;
	}
	
	reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
		int nb_offsprings <- 1 + rnd(nb_max_offsprings -1);
		create species(self) number: nb_offsprings {
			myCell <- myself.myCell ;
			location <- myCell.location ;
			energy <- myself.energy / nb_offsprings ;
		}
		energy <- energy / nb_offsprings ;
	}
	
	aspect base {
		draw circle(size) color: color ;
	}
	aspect icon {
		draw my_icon size: 2 * size ;
	}
	aspect info {
		draw square(size) color: color ;
		draw string(energy with_precision 2) size: 3 color: #black ;
	}
}

species prey parent: generic_species {
	rgb color <- #blue;
	float max_energy <- prey_max_energy ;
	float max_transfert <- prey_max_transfert ;
	float energy_consum <- prey_energy_consum ;
	float proba_reproduce <- prey_proba_reproduce ;
	int nb_max_offsprings <- prey_nb_max_offsprings ;
	float energy_reproduce <- prey_energy_reproduce ;
	file my_icon <- file("../images/predator_prey_sheep.png") ;
		
	reflex eat when: myCell.food > 0 {
		float energy_transfert <- min([max_transfert, myCell.food]) ;
		myCell.food <- myCell.food - energy_transfert ;
		energy <- energy + energy_transfert ;
	}
	
	vegetation_cell choose_cell {
		return (myCell.neighbors) with_max_of (each.food);
	}
}
	
species predator parent: generic_species {
	rgb color <- #red ;
	float max_energy <- predator_max_energy ;
	float energy_transfert <- predator_energy_transfert ;
	float energy_consum <- predator_energy_consum ;
	list<prey> reachable_preys update: prey inside (myCell);
	float proba_reproduce <- predator_proba_reproduce ;
	int nb_max_offsprings <- predator_nb_max_offsprings ;
	float energy_reproduce <- predator_energy_reproduce ;
	file my_icon <- file("../images/predator_prey_wolf.png") ;
	
	reflex eat when: ! empty(reachable_preys) {
		ask one_of (reachable_preys) {
			do die ;
		}
		energy <- energy + energy_transfert ;
	}
	
	vegetation_cell choose_cell {
		vegetation_cell myCell_tmp <- shuffle(myCell.neighbors) first_with (!(empty (prey inside (each))));
		if myCell_tmp != nil {
			return myCell_tmp;
		} else {
			return one_of (myCell.neighbors);
		} 
	}
}
	
grid vegetation_cell width: 50 height: 50 neighbors: 4 {
	float maxFood <- 1.0 ;
	float foodProd <- (rnd(1000) / 1000) * 0.01 ;
	float food <- (rnd(1000) / 1000) max: maxFood update: food + foodProd ;
	rgb color <- rgb(int(255 * (1 - food)), 255, int(255 * (1 - food))) update: rgb(int(255 * (1 - food)), 255, int(255 *(1 - food))) ;
	list<vegetation_cell> neighbors  <- (self neighbors_at 2); 
}

experiment prey_predator type: gui {
	parameter "Initial number of preys: " var: nb_preys_init  min: 0 max: 1000 category: "Prey" ;
	parameter "Prey max energy: " var: prey_max_energy category: "Prey" ;
	parameter "Prey max transfert: " var: prey_max_transfert  category: "Prey" ;
	parameter "Prey energy consumption: " var: prey_energy_consum  category: "Prey" ;
	parameter "Initial number of predators: " var: nb_predators_init  min: 0 max: 200 category: "Predator" ;
	parameter "Predator max energy: " var: predator_max_energy category: "Predator" ;
	parameter "Predator energy transfert: " var: predator_energy_transfert  category: "Predator" ;
	parameter "Predator energy consumption: " var: predator_energy_consum  category: "Predator" ;
	parameter 'Prey probability reproduce: ' var: prey_proba_reproduce category: 'Prey' ;
	parameter 'Prey nb max offsprings: ' var: prey_nb_max_offsprings category: 'Prey' ;
	parameter 'Prey energy reproduce: ' var: prey_energy_reproduce category: 'Prey' ;
	parameter 'Predator probability reproduce: ' var: predator_proba_reproduce category: 'Predator' ;
	parameter 'Predator nb max offsprings: ' var: predator_nb_max_offsprings category: 'Predator' ;
	parameter 'Predator energy reproduce: ' var: predator_energy_reproduce category: 'Predator' ;
	
	output {
		display main_display {
			grid vegetation_cell lines: #black ;
			species prey aspect: icon ;
			species predator aspect: icon ;
		}
		display info_display {
			grid vegetation_cell lines: #black ;
			species prey aspect: info ;
			species predator aspect: info ;
		}
		monitor "Number of preys" value: nb_preys;
		monitor "Number of predators" value: nb_predators;
	}
}
  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Model Section
    1. Runtime Concepts
    2. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Diffusion
  3. Using Database
  4. Using FIPA ACL
  5. Using BDI with BEN
  6. Using Driving Skill
  7. Manipulate dates
  8. Manipulate lights
  9. Using comodel
  10. Save and restore Simulations
  11. Using network
  12. Headless mode
  13. Using Headless
  14. Writing Unit Tests
  15. Ensure model's reproducibility
  16. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally