Skip to content

PredatorPrey_step9

Julien Mazars edited this page Apr 15, 2016 · 11 revisions

9. Stopping condition

This 9th step Illustrates how to use the halt action to stop a simulation

Formulation

  • Adding of a stopping condition for the simulation: when there is no more prey or predator agents, the simulation stops

Model Definition

We add a new reflex that stops the simulation if the number of preys or the number of predator is null.

global {
   ...
   reflex stop_simulation when: (nb_preys = 0) or (nb_predators = 0) {
      do halt ;
   } 
}

Note that it would have been possible to use the pause action that pauses the simulation instead of the halt action that stops the simulation.

Complete Model

model prey_predator

global {
	int nb_preys_init <- 200;
	int nb_predators_init <- 20;
	float prey_max_energy <- 1.0;
	float prey_max_transfert <- 0.1 ;
	float prey_energy_consum <- 0.05;
	float predator_max_energy <- 1.0;
	float predator_energy_transfert <- 0.5;
	float predator_energy_consum <- 0.02;
	float prey_proba_reproduce <- 0.01;
	int prey_nb_max_offsprings <- 5; 
	float prey_energy_reproduce <- 0.5; 
	float predator_proba_reproduce <- 0.01;
	int predator_nb_max_offsprings <- 3;
	float predator_energy_reproduce <- 0.5;
	
	int nb_preys -> {length (prey)};
	int nb_predators -> {length (predator)};
	
	init {
		create prey number: nb_preys_init ; 
		create predator number: nb_predators_init ;
	}
	
	reflex stop_simulation when: (nb_preys = 0) or (nb_predators = 0) {
		do halt ;
	} 
}

species generic_species {
	float size <- 1.0;
	rgb color  ;
	float max_energy;
	float max_transfert;
	float energy_consum;
	float proba_reproduce ;
	float nb_max_offsprings;
	float energy_reproduce;
	file my_icon;
	vegetation_cell myCell <- one_of (vegetation_cell) ;
	float energy <- (rnd(1000) / 1000) * max_energy  update: energy - energy_consum max: max_energy ;
	
	init {
		location <- myCell.location;
	}
		
	reflex basic_move {
		myCell <- choose_cell();
		location <- myCell.location; 
	} 
	
	vegetation_cell choose_cell {
		return nil;
	}
		
	reflex die when: energy <= 0 {
		do die ;
	}
	
	reflex reproduce when: (energy >= energy_reproduce) and (flip(proba_reproduce)) {
		int nb_offsprings <- 1 + rnd(nb_max_offsprings -1);
		create species(self) number: nb_offsprings {
			myCell <- myself.myCell ;
			location <- myCell.location ;
			energy <- myself.energy / nb_offsprings ;
		}
		energy <- energy / nb_offsprings ;
	}
	
	aspect base {
		draw circle(size) color: color ;
	}
	aspect icon {
		draw my_icon size: 2 * size ;
	}
	aspect info {
		draw square(size) color: color ;
		draw string(energy with_precision 2) size: 3 color: #black ;
	}
}

species prey parent: generic_species {
	rgb color <- #blue;
	float max_energy <- prey_max_energy ;
	float max_transfert <- prey_max_transfert ;
	float energy_consum <- prey_energy_consum ;
	float proba_reproduce <- prey_proba_reproduce ;
	int nb_max_offsprings <- prey_nb_max_offsprings ;
	float energy_reproduce <- prey_energy_reproduce ;
	file my_icon <- file("../images/predator_prey_sheep.png") ;
		
	reflex eat when: myCell.food > 0 {
		float energy_transfert <- min([max_transfert, myCell.food]) ;
		myCell.food <- myCell.food - energy_transfert ;
		energy <- energy + energy_transfert ;
	}
	
	vegetation_cell choose_cell {
		return (myCell.neighbours) with_max_of (each.food);
	}
}
	
species predator parent: generic_species {
	rgb color <- #red ;
	float max_energy <- predator_max_energy ;
	float energy_transfert <- predator_energy_transfert ;
	float energy_consum <- predator_energy_consum ;
	list<prey> reachable_preys update: prey inside (myCell);
	float proba_reproduce <- predator_proba_reproduce ;
	int nb_max_offsprings <- predator_nb_max_offsprings ;
	float energy_reproduce <- predator_energy_reproduce ;
	file my_icon <- file("../images/predator_prey_wolf.png") ;
	
	reflex eat when: ! empty(reachable_preys) {
		ask one_of (reachable_preys) {
			do die ;
		}
		energy <- energy + energy_transfert ;
	}
	
	vegetation_cell choose_cell {
		vegetation_cell myCell_tmp <- shuffle(myCell.neighbours) first_with (!(empty (prey inside (each))));
		if myCell_tmp != nil {
			return myCell_tmp;
		} else {
			return one_of (myCell.neighbours);
		} 
	}
}
	
grid vegetation_cell width: 50 height: 50 neighbours: 4 {
	float maxFood <- 1.0 ;
	float foodProd <- (rnd(1000) / 1000) * 0.01 ;
	float food <- (rnd(1000) / 1000) max: maxFood update: food + foodProd ;
	rgb color <- rgb(int(255 * (1 - food)), 255, int(255 * (1 - food))) update: rgb(int(255 * (1 - food)), 255, int(255 *(1 - food))) ;
	list<vegetation_cell> neighbours  <- (self neighbours_at 2); 
}

experiment prey_predator type: gui {
	parameter "Initial number of preys: " var: nb_preys_init  min: 0 max: 1000 category: "Prey" ;
	parameter "Prey max energy: " var: prey_max_energy category: "Prey" ;
	parameter "Prey max transfert: " var: prey_max_transfert  category: "Prey" ;
	parameter "Prey energy consumption: " var: prey_energy_consum  category: "Prey" ;
	parameter "Initial number of predators: " var: nb_predators_init  min: 0 max: 200 category: "Predator" ;
	parameter "Predator max energy: " var: predator_max_energy category: "Predator" ;
	parameter "Predator energy transfert: " var: predator_energy_transfert  category: "Predator" ;
	parameter "Predator energy consumption: " var: predator_energy_consum  category: "Predator" ;
	parameter 'Prey probability reproduce: ' var: prey_proba_reproduce category: 'Prey' ;
	parameter 'Prey nb max offsprings: ' var: prey_nb_max_offsprings category: 'Prey' ;
	parameter 'Prey energy reproduce: ' var: prey_energy_reproduce category: 'Prey' ;
	parameter 'Predator probability reproduce: ' var: predator_proba_reproduce category: 'Predator' ;
	parameter 'Predator nb max offsprings: ' var: predator_nb_max_offsprings category: 'Predator' ;
	parameter 'Predator energy reproduce: ' var: predator_energy_reproduce category: 'Predator' ;
	
	output {
		display main_display {
			grid vegetation_cell lines: #black ;
			species prey aspect: icon ;
			species predator aspect: icon ;
		}
		display info_display {
			grid vegetation_cell lines: #black ;
			species prey aspect: info ;
			species predator aspect: info ;
		}
		monitor "Number of preys" value: nb_preys;
		monitor "Number of predators" value: nb_predators;
	}
}
  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Model Section
    1. Runtime Concepts
    2. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Diffusion
  3. Using Database
  4. Using FIPA ACL
  5. Using BDI with BEN
  6. Using Driving Skill
  7. Manipulate dates
  8. Manipulate lights
  9. Using comodel
  10. Save and restore Simulations
  11. Using network
  12. Headless mode
  13. Using Headless
  14. Writing Unit Tests
  15. Ensure model's reproducibility
  16. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally