-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path2040.kth-smallest-product-of-two-sorted-arrays.cpp
56 lines (53 loc) · 1.57 KB
/
2040.kth-smallest-product-of-two-sorted-arrays.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
// Tag: Array, Binary Search
// Time: O(logA * NlogM)
// Space: O(1)
// Ref: -
// Note: -
// Given two sorted 0-indexed integer arrays nums1 and nums2 as well as an integer k, return the kth (1-based) smallest product of nums1[i] * nums2[j] where 0 <= i < nums1.length and 0 <= j < nums2.length.
//
// Example 1:
//
// Input: nums1 = [2,5], nums2 = [3,4], k = 2
// Output: 8
// Explanation: The 2 smallest products are:
// - nums1[0] * nums2[0] = 2 * 3 = 6
// - nums1[0] * nums2[1] = 2 * 4 = 8
// The 2nd smallest product is 8.
//
// Example 2:
//
// Input: nums1 = [-4,-2,0,3], nums2 = [2,4], k = 6
// Output: 0
// Explanation: The 6 smallest products are:
// - nums1[0] * nums2[1] = (-4) * 4 = -16
// - nums1[0] * nums2[0] = (-4) * 2 = -8
// - nums1[1] * nums2[1] = (-2) * 4 = -8
// - nums1[1] * nums2[0] = (-2) * 2 = -4
// - nums1[2] * nums2[0] = 0 * 2 = 0
// - nums1[2] * nums2[1] = 0 * 4 = 0
// The 6th smallest product is 0.
//
// Example 3:
//
// Input: nums1 = [-2,-1,0,1,2], nums2 = [-3,-1,2,4,5], k = 3
// Output: -6
// Explanation: The 3 smallest products are:
// - nums1[0] * nums2[4] = (-2) * 5 = -10
// - nums1[0] * nums2[3] = (-2) * 4 = -8
// - nums1[4] * nums2[0] = 2 * (-3) = -6
// The 3rd smallest product is -6.
//
//
// Constraints:
//
// 1 <= nums1.length, nums2.length <= 5 * 104
// -105 <= nums1[i], nums2[j] <= 105
// 1 <= k <= nums1.length * nums2.length
// nums1 and nums2 are sorted.
//
//
class Solution {
public:
long long kthSmallestProduct(vector<int>& nums1, vector<int>& nums2, long long k) {
}
};