-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path213.house-robber-ii.cpp
60 lines (53 loc) · 1.71 KB
/
213.house-robber-ii.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
// Tag: Array, Dynamic Programming
// Time: O(N)
// Space: O(N)
// Ref: -
// Note: -
// You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed. All houses at this place are arranged in a circle. That means the first house is the neighbor of the last one. Meanwhile, adjacent houses have a security system connected, and it will automatically contact the police if two adjacent houses were broken into on the same night.
// Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.
//
// Example 1:
//
// Input: nums = [2,3,2]
// Output: 3
// Explanation: You cannot rob house 1 (money = 2) and then rob house 3 (money = 2), because they are adjacent houses.
//
// Example 2:
//
// Input: nums = [1,2,3,1]
// Output: 4
// Explanation: Rob house 1 (money = 1) and then rob house 3 (money = 3).
// Total amount you can rob = 1 + 3 = 4.
//
// Example 3:
//
// Input: nums = [1,2,3]
// Output: 3
//
//
// Constraints:
//
// 1 <= nums.length <= 100
// 0 <= nums[i] <= 1000
//
//
class Solution {
public:
int rob(vector<int>& nums) {
if (nums.size() == 1) {
return nums[0];
}
vector<int> nums1(nums.begin() + 1, nums.end());
vector<int> nums2(nums.begin(), nums.end() - 1);
return max(helper(nums1), helper(nums2));
}
int helper(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n + 1, 0);
dp[1] = nums[0];
for (int i = 2; i <= n; i++) {
dp[i] = max(dp[i - 1], dp[i - 2] + nums[i - 1]);
}
return dp[n];
}
};