-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path338.counting-bits.py
65 lines (61 loc) · 1.46 KB
/
338.counting-bits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Tag: Dynamic Programming, Bit Manipulation
# Time: O(N)
# Space: O(1)
# Ref: -
# Note: -
# Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1's in the binary representation of i.
#
# Example 1:
#
# Input: n = 2
# Output: [0,1,1]
# Explanation:
# 0 --> 0
# 1 --> 1
# 2 --> 10
#
# Example 2:
#
# Input: n = 5
# Output: [0,1,1,2,1,2]
# Explanation:
# 0 --> 0
# 1 --> 1
# 2 --> 10
# 3 --> 11
# 4 --> 100
# 5 --> 101
#
#
# Constraints:
#
# 0 <= n <= 105
#
#
# Follow up:
#
# It is very easy to come up with a solution with a runtime of O(n log n). Can you do it in linear time O(n) and possibly in a single pass?
# Can you do it without using any built-in function (i.e., like __builtin_popcount in C++)?
#
#
class Solution:
def countBits(self, n: int) -> List[int]:
res = [0 for i in range(n + 1)]
for i in range(1, n + 1):
n = i
while n > 0:
res[i] += 1
n = n & (n - 1)
return res
class Solution:
def countBits(self, n: int) -> List[int]:
dp = [0 for i in range(n + 1)]
for i in range(1, n + 1):
dp[i] = dp[i & (i - 1)] + 1
return dp
class Solution:
def countBits(self, n: int) -> List[int]:
dp = [0 for i in range(n + 1)]
for i in range(1, n + 1):
dp[i] = dp[i >> 1] + (i & 1)
return dp