-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path973.k-closest-points-to-origin.cpp
60 lines (55 loc) · 1.87 KB
/
973.k-closest-points-to-origin.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
// Tag: Array, Math, Divide and Conquer, Geometry, Sorting, Heap (Priority Queue), Quickselect
// Time: O(NlogN)
// Space: O(K)
// Ref: -
// Note: -
// Given an array of points where points[i] = [xi, yi] represents a point on the X-Y plane and an integer k, return the k closest points to the origin (0, 0).
// The distance between two points on the X-Y plane is the Euclidean distance (i.e., √(x1 - x2)2 + (y1 - y2)2).
// You may return the answer in any order. The answer is guaranteed to be unique (except for the order that it is in).
//
// Example 1:
//
//
// Input: points = [[1,3],[-2,2]], k = 1
// Output: [[-2,2]]
// Explanation:
// The distance between (1, 3) and the origin is sqrt(10).
// The distance between (-2, 2) and the origin is sqrt(8).
// Since sqrt(8) < sqrt(10), (-2, 2) is closer to the origin.
// We only want the closest k = 1 points from the origin, so the answer is just [[-2,2]].
//
// Example 2:
//
// Input: points = [[3,3],[5,-1],[-2,4]], k = 2
// Output: [[3,3],[-2,4]]
// Explanation: The answer [[-2,4],[3,3]] would also be accepted.
//
//
// Constraints:
//
// 1 <= k <= points.length <= 104
// -104 <= xi, yi <= 104
//
//
class Solution {
public:
vector<vector<int>> kClosest(vector<vector<int>>& points, int k) {
priority_queue<pair<int, int>> heap;
for (int i = 0; i < points.size(); i++) {
int distance = points[i][0] * points[i][0] + points[i][1] * points[i][1];
if (heap.size() == k && distance < heap.top().first) {
heap.pop();
}
if (heap.size() < k) {
heap.emplace(distance, i);
}
}
vector<vector<int>> res;
while (!heap.empty()) {
vector<int> p = points[heap.top().second];
heap.pop();
res.push_back(p);
}
return res;
}
};