-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathlploss.py
30 lines (22 loc) · 851 Bytes
/
lploss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import torch
class LpLoss(object):
def __init__(self, d=2, p=2, size_average=True, reduction=True):
super(LpLoss, self).__init__()
#Dimension and Lp-norm type are postive
assert d > 0 and p > 0
self.d = d
self.p = p
self.reduction = reduction
self.size_average = size_average
def rel(self, x, y):
num_examples = x.size()[0]
diff_norms = torch.norm(x.reshape(num_examples,-1) - y.reshape(num_examples,-1), self.p, 1)
y_norms = torch.norm(y.reshape(num_examples,-1), self.p, 1)
if self.reduction:
if self.size_average:
return torch.mean(diff_norms/y_norms)
else:
return torch.sum(diff_norms/y_norms)
return diff_norms/y_norms
def __call__(self, x, y):
return self.rel(x, y)