-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtestingFullyConnectedRegression.py
40 lines (35 loc) · 1.33 KB
/
testingFullyConnectedRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from ExampleModels import FullyConnectedRegressor
from Optimizers import GradientDescentOptimizer
import numpy as np
import matplotlib.pyplot as plt
from pytorchSimpleModels import Pytorch_FullyConnectedRegressor, Pytorch_Simple_DataModule
import pytorch_lightning as pl
import torch
import ExampleDatasets
dataDim = 1
trainingDataX = 2*np.random.random(200) - 1
trainingDataY = 1/2*(1 + np.cos(trainingDataX*2*np.pi))#slope*trainingDataX + intercept
trainingDataY += 0.01*np.random.random(trainingDataY.shape)
plt.figure()
plt.scatter(trainingDataX, trainingDataY)
whichModel = "mine"
batchSize = 2
numEpochs = 200
lr = 0.01
layerDims = [[1, 200], [200, 1]]
if(whichModel == "mine"):
opt = GradientDescentOptimizer(lr)
model = FullyConnectedRegressor(layerDims)
dataset = ExampleDatasets.SimpleDataset(trainingDataX, trainingDataY)
model.fit(dataset, numEpochs, batchSize, opt)
else:
model = Pytorch_FullyConnectedRegressor(layerDims, lr=lr)
dataModule = Pytorch_Simple_DataModule(trainingDataX, trainingDataY, batchSize)
trainer = pl.Trainer(gpus=0, max_epochs=numEpochs)
trainer.fit(model, dataModule)
plotX = np.arange(-1, 1, 0.01) if model == "mine" else torch.arange(-1, 1, 0.01)
predictedY = model(plotX)
if(not whichModel == "mine"):
predictedY = predictedY.detach().numpy()
plt.plot(plotX, predictedY)
plt.show()