-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvector2d.py
executable file
·265 lines (193 loc) · 6.77 KB
/
vector2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
'''2D Vector with related methods
Created for HIT3046 AI for Games by Clinton Woodward [email protected]
Updated by Steve Dower
'''
from math import sqrt, cos, sin, acos, asin, tan, atan
from random import uniform
MIN_FLOAT = 1e-300
def is_equal(a, b):
return abs(a-b) < 1e-12
# Not needed, but fyi ...
#def PointToVector2D(pt):
# return Vector2D(pt.x, pt.y)
#
#def Vector2DToPoint(v):
# return Point2D(v.x, v.y)
class Rect(object):
def __init__(self, rect={'left': 0, 'bottom': 0, 'top': 10, 'right': 10}):
self.left = rect['left']
self.top = rect['top']
self.right = rect['right']
self.bottom = rect['bottom']
def getBox(self):
return (self.left, self.top, self.right, self.bottom)
def getPoints(self):
return [
Vector2D(self.left, self.top),
Vector2D(self.right, self.top),
Vector2D(self.right, self.bottom),
Vector2D(self.left, self.bottom)
]
class Points(object):
def __init__(self, pts = []):
self.pts = pts
def append(self, pt):
self.pts.append(pt)
def transform(self, matrix):
matrix.transform_vector2d_list(self.pts)
return self
def copy(self):
return Points([p.copy() for p in self.pts])
def reverse(self):
self.pts.reverse()
return self
def __str__(self):
return str([str(p) for p in self.pts])
class Vector2D(object):
__slots__ = ('x', 'y')
def __init__(self,x=0.,y=0.):
self.x = x
self.y = y
def zero(self):
''' set x and y to zero '''
self.x = 0.
self.y = 0.
def is_zero(self):
''' return true if both x and y are zero '''
return (self.x**2 + self.y**2) < MIN_FLOAT
def length(self):
''' return the length of the vector '''
x = self.x
y = self.y
return sqrt(x*x + y*y)
def lengthSq(self):
''' return the squared length (avoid sqrt()) '''
x = self.x
y = self.y
return x*x + y*y
def normalise(self):
''' normalise self to a unit vector of length = 1.0 '''
x = self.x
y = self.y
l = sqrt(x*x + y*y)
try:
self.x = x/l
self.y = y/l
except ZeroDivisionError:
self.x = 0.
self.y = 0.
return self
def get_normalised(self):
''' return a normalised copy of self '''
result = self.copy()
return result.normalise()
def dot(self, v2):
''' The dot (inner) product of self and v2 vector '''
return self.x*v2.x + self.y*v2.y
def sign(self, v2):
''' return +1 if v2 is clockwise of self.
return -1 if v2 is anti-clockwise of self
Assumes Y axis points down and X points right '''
if self.y*v2.x > self.x*v2.y:
return -1
else:
return 1
def perp(self):
''' return a vector perpendicular to self. '''
return Vector2D(-self.y, self.x)
def truncate(self, maxlength):
''' limit the length (scale x and y) to maxlength '''
if self.length() > maxlength:
self.normalise() # unit vector length = 1.0
self *= maxlength # so length is 1.0 * maxlength
return self
def distance(self, v2):
''' the distance between self and v2 vector '''
dx = v2.x - self.x
dy = v2.y - self.y
return sqrt(dx*dx + dy*dy)
def distanceSq(self, v2):
''' the squared distance between self and v2 vector '''
dx = v2.x - self.x
dy = v2.y - self.y
return dx*dx + dy*dy
def distanceTo(self, v2):
''' the distance between self and v2 vector '''
dx = v2.x - self.x
dy = v2.y - self.y
return Vector2D(dx, dy)
def reflect(self, norm):
''' Reflect self around the norm vector provided. '''
# eg the path of a ball reflected off a wall
self += 2.0 * self.dot(norm) * norm.get_reverse()
return self
def get_reflected(self, norm):
''' Reflect self around the norm vector provided. '''
# eg the path of a ball reflected off a wall
temp = self.copy()
temp += 2.0 * temp.dot(norm) * norm.get_reverse()
return temp
def reverse(self):
''' reverse of ourself, return self for chaining. '''
self.x *= -1
self.y *= -1
return self
def get_reversed(self):
''' return a new vector that is the reverse of self. '''
return Vector2D(-self.x, -self.y)
def rotate(self, angle):
cs = cos(angle)
sn = sin(angle)
px = self.x * cs - self.y * sn;
py = self.x * sn + self.y * cs;
self.x = px
self.y = py
return self
def get_rotated(self, angle):
''' return a new gector that is the '''
return self.copy().rotate(angle)
def tuple(self):
return (self.x, self.y)
def __neg__(self): #
''' get_reverse(), but using - operator based instead. '''
return Vector2D(-self.x, -self.y)
def copy(self):
''' Simple copy Vector2D with self values '''
return Vector2D(self.x, self.y)
def __iadd__(self, rhs): # +=
self.x += rhs.x
self.y += rhs.y
return self
def __isub__(self, rhs): # -=
self.x -= rhs.x
self.y -= rhs.y
return self
def __imul__(self, rhs): # *=
self.x *= rhs
self.y *= rhs
return self
def __idiv__(self, rhs): # /=
self.x /= rhs
self.y /= rhs
return self
def __eq__(self, rhs): # ==
return is_equal(self.x, rhs.x) and is_equal(self.y, rhs.y)
def __ne__(self, rhs): # !=
return (self.x != rhs.x) or (self.y != rhs.y)
def __add__(self, rhs): # self + rhs
return Vector2D(self.x+rhs.x, self.y+rhs.y)
def __sub__(self, rhs): # self - rhs
return Vector2D(self.x-rhs.x, self.y-rhs.y)
def __mul__(self, rhs): # self * rhs (scalar)
return Vector2D(self.x*rhs, self.y*rhs)
def __rmul__(self, lhs): # lhs * self
return Vector2D(self.x*lhs, self.y*lhs)
def __div__(self, rhs): # self / rhs (scalar)
return Vector2D(self.x/rhs, self.y/rhs)
def __rdiv__(self, lhs): # lhs (scalar) / self
return Vector2D(lhs/self.x, lhs/self.y)
def __str__(self):
return '(%7.2f, %7.2f)' % (self.x, self.y)
@staticmethod
def random(magnitude=1):
return Vector2D(uniform(0, 1), uniform(0, 1)).normalise() * magnitude