-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDualNetGO_evidence.py
446 lines (343 loc) · 17 KB
/
DualNetGO_evidence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
##############################################
## Revised by Zhuoyang CHEN
## Date: 2023-07-17
#############################################
from __future__ import division
from __future__ import print_function
import time
import random
import argparse
import numpy as np
from scipy import sparse
import scipy.io as sio
import os
from sklearn.preprocessing import minmax_scale
import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
from model import *
import pickle
import itertools
import warnings
from tqdm import tqdm
import csv
import aslloss
from validation import evaluate_performance
#from comet_ml import Experiment #uncomment this if needed
warnings.filterwarnings("ignore") #temporary ignoring warning from torch_sparse
# Training settings
example_usage = 'python DualNetGO_evidence.py --org human --aspect P --evidence textmining --step1_iter 500 --step2_iter 50 --epochs 100 --max_feat_select 4 --num_adj 5'
parser = argparse.ArgumentParser(description='DualNetGO main function', epilog=example_usage)
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--org', type=str, default='human', help='human or mouse')
parser.add_argument('--aspect', type=str, default='P', help='function category')
parser.add_argument('--evidence', type=str, default='neighborhood', help='what kind of evidence to explore')
parser.add_argument('--epochs', type=int, default=100, help='Number of epochs to train.')
parser.add_argument('--hidden', type=int, default=512, help='hidden dimensions.')
parser.add_argument('--dropout1', type=float, default=0.5, help='Dropout rate (1 - keep probability).')
parser.add_argument('--dropout2', type=float, default=0.5, help='Dropout rate (1 - keep probability).')
parser.add_argument('--dropout3', type=float, default=0.1, help='Dropout rate (1 - keep probability).')
parser.add_argument('--dev', type=int, default=0, help='device id')
parser.add_argument('--layer_norm',type=int, default=1, help='layer norm')
parser.add_argument('--w_fc3',type=float, default=0.000, help='Weight decay layer-2')
parser.add_argument('--w_fc2',type=float, default=0.000, help='Weight decay layer-2')
parser.add_argument('--w_fc1',type=float, default=0.000, help='Weight decay layer-1')
parser.add_argument('--lr_fc1',type=float, default=0.01, help='Learning rate 2 fully connected layers')
parser.add_argument('--lr_fc2',type=float, default=0.01, help='Learning rate 2 fully connected layers')
parser.add_argument('--lr_sel',type=float, default=0.01, help='Learning rate for selector')
parser.add_argument('--wd_sel',type=float, default=1e-05,help='weight decay selector layer')
parser.add_argument('--step1_iter',type=int, default=400, help='Step-1 iterations')
parser.add_argument('--step2_iter',type=int, default=20, help='Step-2 iterations')
parser.add_argument('--max_feat_select',type=int, default=5, help='Maximum feature matrices that can be selected.')
parser.add_argument('--num_adj',type=int, default=4, help='Number of dense graph embedding matrices as input')
parser.add_argument('--patience',type=int, default=100)
parser.add_argument('--modeldir',type=str, default='human_evidence', help='folder to save the trained model')
parser.add_argument('--resultdir',type=str, default='.', help='folder to save the csv result')
parser.add_argument('--out',type=str, default='results_evidence.csv', help='csv result')
parser.add_argument('--comet', action='store_true', default=False, help='use comet_ml to log results')
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
os.makedirs(args.modeldir, exist_ok=True)
os.makedirs(args.resultdir, exist_ok=True)
#maximum length of subset to find
feat_select = int(args.max_feat_select)
sec_iter = args.step2_iter
layer_norm = bool(int(args.layer_norm))
if args.comet:
with open('/home/zhuoyang/comet_API_token','r') as f:
experiment = Experiment(f.read().rstrip(), project_name="DualNetGO_evidence")
experiment.set_name(f'{args.org}_iter1_{args.step1_iter}_iter2_{args.step2_iter}_feat_{args.max_feat_select}_epoch{args.epochs}_{args.aspect}_{args.evidence}_seed{args.seed}')
else :
experiment=None
print("==========================")
#print(f"Dataset: {args.data}")
#print(f"Dropout1:{args.dropout1}, Dropout2:{args.dropout2}, Dropout3:{args.dropout3}, layer_norm: {layer_norm}")
#print(f" w_fc2:{args.w_fc2}, w_fc1:{args.w_fc1}, w_sel:{args.wd_sel}, lr_fc1:{args.lr_fc1}, lr_fc2:{args.lr_fc2},lr_sel:{args.lr_sel}, 1st step iter: {args.step1_iter}, 2nd step iter: {args.step2_iter}")
criterion = aslloss.AsymmetricLossOptimized(
gamma_neg=2, gamma_pos=0,
clip=0.0,
disable_torch_grad_focal_loss=False,
eps=1e-5,
)
cudaid = "cuda:"+str(args.dev)
device = torch.device(cudaid)
checkpt_file = f'{args.modeldir}/{args.org}_iter1_{args.step1_iter}_iter2_{args.step2_iter}_feat_{args.max_feat_select}_epoch{args.epochs}_{args.aspect}_{args.evidence}_seed{args.seed}.pt'
if os.path.exists(checkpt_file):
print('Model exists!')
import sys
sys.exit(0)
#set number of adjacency matrices in the input data
num_adj = int(args.num_adj)
def train_step(model,optimizer,labels,list_mat,list_ind):
model.train()
optimizer.zero_grad()
output = model(list_mat, layer_norm,list_ind)
outs = nn.functional.sigmoid(output.detach()).cpu().numpy()
perf_train = evaluate_performance(labels, outs, (outs > 0.5).astype(int))
loss_train = criterion(torch.zeros(2,2,2), output, torch.tensor(labels).to(device))
loss_train.backward()
optimizer.step()
return loss_train.item(),perf_train['Fmax']
def validate_step(model,labels,list_mat,list_ind):
model.eval()
with torch.no_grad():
output = model(list_mat, layer_norm,list_ind)
outs = nn.functional.sigmoid(output.detach()).cpu().numpy()
loss_val = criterion(torch.zeros(2,2,2), output, torch.tensor(labels).to(device))
perf_val = evaluate_performance(labels, outs, (outs > 0.5).astype(int))
return loss_val.item(),perf_val['Fmax'],perf_val['tmax']
def test_step(model,labels,list_mat,list_ind,threshold):
model.load_state_dict(torch.load(checkpt_file))
model.eval()
with torch.no_grad():
output = model(list_mat, layer_norm,list_ind)
outs = nn.functional.sigmoid(output.detach()).cpu().numpy()
loss_test = criterion(torch.zeros(2,2,2), output, torch.tensor(labels).to(device))
perf_test = evaluate_performance(labels, outs, (outs > threshold).astype(int))
#print(mask_val)
return loss_test.item(),perf_test
def selector_step(model,optimizer_sel,mask,o_loss):
model.train()
optimizer_sel.zero_grad()
mask.requires_grad = True
output = model(mask,o_loss)
selector_loss = 10*F.mse_loss(output,o_loss)
selector_loss.backward()
input_grad = mask.grad.data
optimizer_sel.step()
return selector_loss.item(), input_grad
def selector_eval(model,mask,o_loss):
model.eval()
with torch.no_grad():
output = model(mask,o_loss)
selector_loss = F.mse_loss(output,o_loss)
return selector_loss.item()
def new_optimal_mask(model, model_sel, optimizer_sel, list_val_mat, device, labels, num_layer):
#Calculate input gradients
equal_masks = torch.ones(num_layer).float().to(device)
#Assign same weight to all indices
equal_masks *= 0.5
model_sel.train()
optimizer_sel.zero_grad()
equal_masks.requires_grad = True
output = model_sel(equal_masks,None)
output.backward()
tmp_grad = equal_masks.grad.data
tmp_grad = torch.abs(tmp_grad)
#Top mask indices by gradients
best_grad = sorted(torch.argsort(tmp_grad)[-feat_select:].tolist())
#Creating possible optimal subsets with top mask indices
new_combinations = list()
for ll in range(1,feat_select+1):
new_combinations.extend(list(itertools.combinations(best_grad,ll)))
list_ind = list(range(len(new_combinations)))
best_mask = []
best_mask_loss = []
#From these possible subsets, sample and check validation loss
for _ in range(10):
get_ind = random.choices(list_ind)[0]
get_ind = list(new_combinations[get_ind])
get_ind = sorted(get_ind)
best_mask.append(get_ind)
input_val_mat = [list_val_mat[ww] for ww in get_ind]
loss_val,acc_val,_ = validate_step(model,labels,input_val_mat,get_ind)
best_mask_loss.append(loss_val)
#Find indices with minimum validation loss
min_loss_ind = np.argmin(best_mask_loss)
optimal_mask = best_mask[min_loss_ind]
return optimal_mask, model_sel, model
def train(list_train_mat,list_val_mat,list_test_mat,list_label,num_nodes,num_feat,num_labels):
list_train_mat = [mat.to(device) for mat in list_train_mat]
list_val_mat = [mat.to(device) for mat in list_val_mat]
#Set number of linear layers of input adj/feat to create
num_adj_mat = num_adj
num_feat_mat = len(list_train_mat) - num_adj
num_layer = len(list_train_mat)
model = Classifier_evidence(nfeat=num_feat,
nhidden=args.hidden,
nclass=num_labels,
dropout1=args.dropout1,
dropout2=args.dropout2,
dropout3=args.dropout3,
num_nodes=num_nodes, device=int(args.dev)).to(device)
optimizer_sett_classifier = [
{'params': model.fc2.parameters(), 'weight_decay': args.w_fc2, 'lr': args.lr_fc2},
{'params': model.fc3.parameters(), 'weight_decay': args.w_fc3, 'lr': args.lr_fc2},
{'params': model.fc1.parameters(), 'weight_decay': args.w_fc1, 'lr': args.lr_fc1},
]
optimizer = optim.Adam(optimizer_sett_classifier)
model_sel = Selector(num_layer,256).to(device)
optimizer_select = [
{'params':model_sel.fc1.parameters(), 'weight_decay':args.wd_sel, 'lr':args.lr_sel},
{'params':model_sel.fc2.parameters(), 'weight_decay':args.wd_sel, 'lr':args.lr_sel}
]
optimizer_sel = optim.Adam(optimizer_select)
bad_counter = 0
best = 999999999
best_sub = []
#Calculate all possible combinations of subsets upto length feat_select
combinations = list()
for nn in range(1,feat_select+1):
combinations.extend(list(itertools.combinations(range(num_layer),nn)))
dict_comb = dict()
for kk,cc in enumerate(combinations):
dict_comb[cc] = kk
#Step-1 training: Exploration step
print('Step1: Exploration===============')
for epoch in tqdm(range(args.step1_iter)):
#choose one subset randomly
rand_ind = random.choice(combinations)
#create input to model
input_train_mat = [list_train_mat[ww] for ww in rand_ind]
input_val_mat = [list_val_mat[ww] for ww in rand_ind]
#Train classifier and selector
loss_tra,acc_tra = train_step(model,optimizer,list_label[0],input_train_mat,rand_ind)
loss_val,acc_val,_ = validate_step(model,list_label[1],input_val_mat,rand_ind)
#Input mask vector to selector
input_mask = torch.zeros(num_layer).float().to(device)
input_mask[list(rand_ind)] = 1.0
input_loss = torch.FloatTensor([loss_tra]).to(device)
eval_loss = torch.FloatTensor([loss_val]).to(device)
loss_select, input_grad = selector_step(model_sel,optimizer_sel,input_mask,input_loss)
#loss_select_val = selector_eval(model_sel,input_mask,eval_loss)
#log metrics
if args.comet:
experiment.log_metric('train_loss', loss_tra, epoch=epoch+1)
experiment.log_metric('train_Fmax', acc_tra, epoch=epoch+1)
experiment.log_metric('valid_loss', loss_val, epoch=epoch+1)
experiment.log_metric('valid_Fmax', acc_val, epoch=epoch+1)
#Starting Step-2: Exploitation
print('Step2: Exploitation===============')
dict_check_loss = dict()
for epoch in tqdm(range(args.epochs)):
if epoch<sec_iter:
#Up to sec_iter epoches optimal subsets are identified
train_mask, model_sel, model = new_optimal_mask(model, model_sel, optimizer_sel, list_val_mat,device, list_label[1],num_layer)
if epoch==sec_iter:
min_ind = min(list(dict_check_loss.keys()))
train_mask = dict_check_loss[min_ind]
input_train_mat = [list_train_mat[ww] for ww in train_mask]
input_val_mat = [list_val_mat[ww] for ww in train_mask]
loss_tra,acc_tra = train_step(model,optimizer,list_label[0],input_train_mat,train_mask)
loss_val,acc_val,tmax = validate_step(model,list_label[1],input_val_mat,train_mask)
if args.comet:
experiment.log_metric('train_loss', loss_tra, epoch=epoch+1+args.step1_iter)
experiment.log_metric('train_Fmax', acc_tra, epoch=epoch+1+args.step1_iter)
experiment.log_metric('valid_loss', loss_val, epoch=epoch+1+args.step1_iter)
experiment.log_metric('valid_Fmax', acc_val, epoch=epoch+1+args.step1_iter)
dict_check_loss[loss_val] = train_mask
if epoch < sec_iter:
input_mask = torch.zeros(num_layer).float().to(device)
input_mask[list(train_mask)] = 1.0
input_loss = torch.FloatTensor([loss_tra]).to(device)
eval_loss = torch.FloatTensor([loss_val]).to(device)
loss_select, _ = selector_step(model_sel,optimizer_sel,input_mask,input_loss)
#loss_select_val = selector_eval(model_sel,input_mask,eval_loss)
if loss_val < best and epoch>= sec_iter:
best = loss_val
#save model
torch.save(model.state_dict(), checkpt_file)
bad_counter = 0
best_sub = train_mask
else:
bad_counter += 1
if bad_counter == args.patience:
break
select_ind = best_sub
del list_train_mat
del list_val_mat
input_test_mat = [list_test_mat[ww] for ww in select_ind]
test_out = test_step(model,list_label[2],input_test_mat,select_ind,tmax)
perf = test_out[1]
if args.comet:
experiment.log_metric('test_Fmax', perf['Fmax'], step=1)
experiment.log_metric('test_acc', perf['acc'], step=1)
experiment.log_metric('test_F1', perf['F1'], step=1)
experiment.log_metric('test_m-aupr', perf['m-aupr'], step=1)
experiment.log_metric('test_M-aupr', perf['M-aupr'], step=1)
return perf, select_ind
## main process =====================================================
acc_list = []
Annot = sio.loadmat(f'data/{args.org}/{args.org}_annot.mat', squeeze_me=True)
train_idx = Annot['indx'][args.aspect].tolist()['train'].tolist().tolist()
valid_idx = Annot['indx'][args.aspect].tolist()['valid'].tolist().tolist()
test_idx = Annot['indx'][args.aspect].tolist()['test'].tolist().tolist()
labels_train = np.array(Annot['GO'][args.aspect].tolist()['train'].tolist())
labels_valid = np.array(Annot['GO'][args.aspect].tolist()['valid'].tolist())
labels_test = np.array(Annot['GO'][args.aspect].tolist()['test'].tolist())
# load adj_mat or embedding:
# embeddings
list_mat = []
for n in ['node2vec','GAE','MLPAE','AE']:
fn = f'data/{args.org}/{args.org}_net_{args.evidence}_{n}.npy'
y = np.load(fn)
list_mat.append(y)
del y
fn = f'data/{args.org}/{args.org}_net_{args.evidence}.mat'
y = sio.loadmat(fn, squeeze_me=True)
y = y['Net'].todense()
y = minmax_scale(np.asarray(y))
list_mat.append(y)
del y
# load features
if args.org == 'mouse':
with open(f'data/{args.org}/features_mouse.npy', 'rb') as f:
Z = pickle.load(f)
else:
with open(f'data/{args.org}/features.npy', 'rb') as f:
Z = pickle.load(f)
list_mat.append(Z)
del Z
num_nodes = list_mat[-2].shape[0]
num_labels = labels_train.shape[1]
num_feat = list_mat[-1].shape[1]
t_total = time.time()
list_total_acc = []
for i in range(1):
#Create training and testing split
list_train_mat = []
list_val_mat = []
list_test_mat = []
for mat in list_mat:
mat = torch.from_numpy(mat).float()
list_train_mat.append(mat[train_idx,:])
list_val_mat.append(mat[valid_idx,:])
list_test_mat.append(mat[test_idx,:])
list_label = [labels_train, labels_valid, labels_test]
del mat
accuracy_data, best_mask = train(list_train_mat,list_val_mat,list_test_mat,list_label,num_nodes,num_feat,num_labels)
num_layer = len(list_train_mat)
acc_list.append(accuracy_data['Fmax'])
list_total_acc.append(100-accuracy_data['Fmax'])
training_time = time.time() - t_total
if args.comet:
experiment.log_metric('training_time', "{:.4f}s".format(training_time), step=1)
print("Train time: {:.4f}s".format(training_time))
print(f"Test accuracy: {np.mean(acc_list):.2f}, {np.round(np.std(acc_list),2)}")
fn = f'{args.resultdir}/{args.out}'
with open(fn, 'a') as f:
csv.writer(f).writerow([args.org, args.w_fc1, args.w_fc2, args.w_fc3, args.dropout1, args.dropout2, args.dropout3, args.lr_fc1, args.lr_fc2, args.lr_sel, args.wd_sel, args.hidden, args.layer_norm, args.step1_iter, args.step2_iter, args.epochs, args.max_feat_select, args.num_adj, args.aspect, args.evidence, accuracy_data['Fmax'], accuracy_data['F1'], accuracy_data['M-F1'], accuracy_data['acc'], accuracy_data['m-aupr'], accuracy_data['M-aupr'], best_mask])