-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathquery.go
759 lines (641 loc) · 22.6 KB
/
query.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
package goql
import (
"errors"
"fmt"
"io"
"reflect"
"regexp"
"sort"
"strings"
"sync"
)
// structTag is the name of the struct tag that this package uses to extract extra information
// from to build GraphQL operations.
const structTag = "goql"
// Compiled regular expressions.
var (
// reName matches a simple field or model name.
// e.g. id
reName = regexp.MustCompile(`^\w+$`)
// reDecl matches a model name with arguments and their types.
// e.g. getUser(name:$name<String!>,age:$age<Int>,alias:$alias<[String!]!>)
reDecl = regexp.MustCompile(`^(?P<name>\w+)(?P<args>\((?:\w+:\$\w+<\[?\w+!?]?!?>,?)*\))$`)
reDeclName = reDecl.SubexpIndex("name")
reDeclArgs = reDecl.SubexpIndex("args")
// reParam extracts parameters from a model name with arguments and their types (reDecl).
// e.g. getUser(name:$name<String!>,age:$age<Int>) -> [name:$name<String!>, age:$age<Int>]
reParam = regexp.MustCompile(`(?P<name>\w+):\$(?P<arg>\w+)<(?P<kind>\[?\w+!?]?!?)>`)
reParamName = reParam.SubexpIndex("name")
reParamArg = reParam.SubexpIndex("arg")
reParamKind = reParam.SubexpIndex("kind")
// reDirective matches a skip, include, or alias directive with arguments. It's worth noting
// here that an alias isn't actually a directive in GraphQL, but it's easiest to deal with it
// as if it were one here.
// e.g. @alias(fieldAlias) | @include($includeName) | @skip($skipID)
reDirective = regexp.MustCompile(`^@(?P<name>\w+)(?P<arg>\(\$?\w+\))$`)
reDirectiveName = reDirective.SubexpIndex("name")
reDirectiveArg = reDirective.SubexpIndex("arg")
)
// keep tag is used to denote a field that is always kept despite whatever the sparse fieldset
// information says.
const keepTag = "keep"
// token represents arguments and variables used throughout a GraphQL query.
type token struct {
Kind string
Name string
Arg string
}
// tokenize takes a slice of tokens and returns a string representation of them.
func tokenize(tokens []token) string {
tn := make([]string, 0, len(tokens))
for _, t := range tokens {
tn = append(tn, fmt.Sprintf("%s: $%s", t.Name, t.Arg))
}
return strings.Join(tn, ", ")
}
// declaration is a data structure that represents a field or model in a GraphQL
// operation.
type declaration struct {
Name string
Alias string
Tokens []token
Template string
}
// tokenize is a receiver function of the Declaration type which takes the information
// contained within and writes it to any type that implements the io.Writer interface.
func (d declaration) tokenize(w io.Writer) {
if d.Alias != "" {
fmt.Fprintf(w, "%s: ", d.Alias) //nolint:errcheck
}
if d.Template != "" {
fmt.Fprintf(w, "%s(%s)", d.Name, tokenize(d.Tokens)) //nolint:errcheck
return
}
io.WriteString(w, d.Name) //nolint:errcheck
}
// directiveEnum is an alias to a string that has distinct constant values defined
// for it allowing it to act as if it were a classic enum.
type directiveEnum string
// Directive constants using the DirectiveEnum type.
const (
directiveAlias = directiveEnum("alias")
directiveSkip = directiveEnum("skip")
directiveInclude = directiveEnum("include")
)
// directive is a data structure that represents a directive for a field or model
// in a GraphQL operation.
type directive struct {
Type directiveEnum
Token token
Template string
}
// tokenize is a receiver function of the Directive type which takes the information
// contained within and writes it to any type that implements the io.Writer interface.
func (d *directive) tokenize(w io.Writer) {
fmt.Fprintf(w, "@%s(if: $%s)", d.Type, d.Token.Arg) //nolint:errcheck
}
// field is a data structure that represents a field or model in a GraphQL query.
type field struct {
Decl declaration
Directives []directive
Fields []field
// Keep, if set to true, tells the marshaling process to ignore whatever is
// contained in the sparse fieldset information about the current field and
// to always render it. Keep is automatically set to true if the marshaler
// detects that the current field is an operation declaration.
Keep bool
}
// tokens recurses through a field to gather all tokens contained within the root
// field as well as all of it's children fields.
func (f *field) tokens() []token {
var tokens []token
// Get the tokens from the declaration and directives of the current token.
tokens = append(tokens, f.Decl.Tokens...)
for _, directive := range f.Directives {
if (directive.Token != token{}) {
tokens = append(tokens, directive.Token)
}
}
// Recurse through children tokens.
for _, field := range f.Fields {
tokens = append(tokens, field.tokens()...)
}
return tokens
}
// argsFromTokens takes a slice of tokens, validates that there are not conflicting type
// statements, and returns a slice of strings whose values are in the form of:
// "$<arg>: <Type>" which can be joined by strings.Join(args, ", ") to render the correct
// format to pass to either query(...) or mutation(...) at the top-level of a GraphQL
// operation.
func argsFromTokens(tokens []token) ([]string, error) {
// len(tokens) might be too big, but it's at least the max size it could be.
argsMap := make(map[string]string, len(tokens))
// we want to ensure these args are always in the same ouput order as they were in the input
// order (first appearance wins). By having a sorted order of the keys, we achieve stable
// marshal output
argOrder := []string{}
// Make sure we don't duplicate variables if they're used more than once, and if
// they are used more than once, validate their types are the same.
for _, token := range tokens {
if kind, exists := argsMap[token.Arg]; exists {
if token.Kind != kind {
return nil, fmt.Errorf("argument $%s cannot have more than one type", token.Arg)
}
continue
}
argsMap[token.Arg] = token.Kind
argOrder = append(argOrder, token.Arg)
}
// This slice will contain values in the form of $<arg>: <Type> which can be joined
// with strings.Join(args, ", ") by the caller to achieve the correct format.
args := make([]string, 0, len(argsMap))
for _, arg := range argOrder {
kind := argsMap[arg]
args = append(args, fmt.Sprintf("$%s: %s", arg, kind))
}
return args, nil
}
// tokenizeWithFields recurses through a field to write all of the information
// contained within the root field as well as all of it's children field to any
// type that implements the io.Writer interface. Unlike tokenize method,
// tokenizeWithFields only writes the data of a field if the declared name of
// the latter exist in the passed fieldset or if the field has the tag `keep`
// switched on.
//
// Returns a bool denoting whether or not the field was written and an error.
func (f *field) tokenizeWithFields(w io.Writer, fields interface{}) (bool, error) { //nolint:funlen
var write bool
switch ts := fields.(type) {
case bool:
write = ts
if len(f.Fields) > 0 {
return false, fmt.Errorf("field %s set to true in sparse fieldset map has children fields, needs submap for children fields", f.Decl.Name) //nolint:lll // Why:long fixed string
}
case Fields:
write = true
if len(f.Fields) == 0 {
return false, fmt.Errorf("field %s set to a submap of fields in sparse fieldset map has no children fields, needs to be set to true or false", f.Decl.Name) //nolint:lll // Why:long fixed string
}
default:
// Include case when fields equals nil
write = false
}
if f.Keep {
write = true
}
if !write {
return false, nil
}
f.Decl.tokenize(w)
for _, directive := range f.Directives {
io.WriteString(w, " ") //nolint:errcheck
directive.tokenize(w)
}
if len(f.Fields) > 0 {
io.WriteString(w, " {\n") //nolint:errcheck
for _, field := range f.Fields {
var written bool
var err error
switch ts := fields.(type) {
case Fields:
written, err = field.tokenizeWithFields(w, ts[field.Decl.Name])
default:
written, err = field.tokenizeWithFields(w, nil)
}
if err != nil {
return false, err
}
if written {
io.WriteString(w, "\n") //nolint:errcheck
}
}
io.WriteString(w, "}") //nolint:errcheck
}
return write, nil
}
// tokenizeAsRoot skips tokenization for the declaration of the receiver field.
// It writes the given declaration name to the writer interface and continues
// the regular tokenization process for the field
func (f *field) tokenizeAsRoot(w io.Writer, declName string, fields Fields) (bool, error) {
io.WriteString(w, declName) //nolint:errcheck
return f.tokenize(w, fields)
}
// tokenizeAsLeaf tokenizes the declaration of the receiver field and continues
// the regular tokenization process for the field
func (f *field) tokenizeAsLeaf(w io.Writer, fields Fields) (bool, error) {
f.Decl.tokenize(w)
return f.tokenize(w, fields)
}
// tokenize recurses through a field to write all of the information contained
// within the root field as well as all of it's children field to any type that
// implements the io.Writer interface.
//
// Returns a bool denoting whether or not the field was written and an error.
func (f *field) tokenize(w io.Writer, fields Fields) (bool, error) { //nolint:gocyclo
for _, directive := range f.Directives {
io.WriteString(w, " ") //nolint:errcheck
directive.tokenize(w)
}
var written bool
var err error
if len(f.Fields) > 0 {
io.WriteString(w, " {\n") //nolint:errcheck
for _, field := range f.Fields {
if fields == nil {
written, err = field.tokenizeAsLeaf(w, nil)
} else {
written, err = field.tokenizeWithFields(w, fields)
}
if err != nil {
return false, err
}
if written {
io.WriteString(w, "\n") //nolint:errcheck
}
}
io.WriteString(w, "}") //nolint:errcheck
}
return true, nil
}
// splitTag takes a tag and splits it into directives and declarations.
func splitTag(tag string) []string {
var sb strings.Builder
var split []string
var inArgs bool
for _, r := range tag {
// This will allow us to ignore commas inside of argument lists.
if strings.ContainsRune("()", r) {
inArgs = !inArgs
}
// If we encounter a comma and we're not inside an argument list,
// add the current split value and reset the string builder to
// start to gather the next.
if r == ',' && !inArgs {
split = append(split, sb.String())
sb.Reset()
continue
}
sb.WriteRune(r)
}
// There will be one tag leftover that still needs added.
split = append(split, sb.String())
return split
}
var errSkipFieldFromTag = errors.New("tag on this struct field indicates this field should be skipped")
type tagParser func(reflect.StructTag) (field, error)
// parseTag takes the value of a graphql tag and parses it into various declarations
// and directives.
func parseTag(tag reflect.StructTag) (field, error) { //nolint:funlen
var f field
var alias string
goqlTag := tag.Get(structTag)
if goqlTag == "-" {
return field{}, errSkipFieldFromTag
}
for _, item := range splitTag(goqlTag) {
item = strings.TrimSpace(item)
switch {
case item == "":
continue
case reName.MatchString(item) && item != keepTag:
// The explicit check that the string isn't a keep tag is necessary
// because reName matches the string "keep". This might be a problem?
f.Decl = declaration{Name: item}
case reDecl.MatchString(item):
f.Decl = parseDecl(item)
f.Keep = true
case reDirective.MatchString(item):
dir, err := parseDirective(item)
if err != nil {
return field{}, err
}
if dir.Type == directiveAlias {
alias = dir.Template
continue
}
f.Directives = append(f.Directives, dir)
case item == keepTag:
f.Keep = true
default:
return field{}, fmt.Errorf("failed to parse tag %q", goqlTag)
}
}
f.Decl.Alias = alias
// sort directives to check for duplication
sort.Slice(f.Directives, func(i, j int) bool {
return f.Directives[i].Type < f.Directives[j].Type
})
// check for duplicate directives
j := 0
for i := 1; i < len(f.Directives); i++ {
x, y := &f.Directives[i], f.Directives[j]
if x.Type == y.Type {
return field{}, fmt.Errorf("duplicate directive in tag %q", x.Type)
}
j++
}
return f, nil
}
func parseTagSupportingJSON(tag reflect.StructTag) (field, error) {
f, err := parseTag(tag)
if err != nil {
return field{}, err
}
if tag.Get(structTag) != "" {
return f, nil
}
// this way of getting the name of a field according to the JSON tag comes straight from the
// internals of the Go JSON module impl:
// https://cs.opensource.google/go/go/+/b3acaa8230e95c232a6f5c30eb7619a0c859ab16:src/encoding/json/tags.go;l=18
jsonname, _, _ := strings.Cut(tag.Get("json"), ",")
f.Decl.Name = jsonname
return f, nil
}
// parseDecl takes a declaration retrieved from a graphql struct tag and parses it
// into a Declaration.
func parseDecl(s string) declaration {
var tokens []token
matches := reDecl.FindStringSubmatch(s)
name := matches[reDeclName]
params := strings.Trim(matches[reDeclArgs], "()")
paramMatches := reParam.FindAllStringSubmatch(params, -1)
for _, match := range paramMatches {
tokens = append(tokens, token{
Kind: match[reParamKind],
Name: match[reParamName],
Arg: match[reParamArg],
})
}
template := reParam.ReplaceAllStringFunc(params, func(param string) string {
if i := strings.Index(param, "["); i != -1 {
return param[:i]
}
return param
})
return declaration{
Name: name,
Tokens: tokens,
Template: template,
}
}
// parseDirective takes a declaration retrieved from a graphql struct tag and parses it
// into a Directive.
func parseDirective(s string) (directive, error) {
matches := reDirective.FindStringSubmatch(s)
dir := directive{
Type: directiveEnum(matches[reDirectiveName]),
Template: strings.Trim(matches[reDirectiveArg], "()"),
}
switch dir.Type {
case directiveAlias:
// there can't be variables in aliases (they're technically not a directive,
// it's just easiest to deal with them as if they were one).
case directiveInclude, directiveSkip:
if strings.HasPrefix(dir.Template, "$") {
dir.Token = token{
Kind: "Boolean!",
Arg: dir.Template[1:],
}
}
default:
return directive{}, fmt.Errorf("unknown directive in tag \"%s\"", dir.Type)
}
return dir, nil
}
// node represents any given struct type or it's fields.
type node struct {
Name string
Type reflect.Type
Tag reflect.StructTag
}
// visit defines a function signature used when "visiting" each node in a tree
// of nodes.
type visit func(n *node) error
// structNode ensures a given type is a struct type and resolves it to a node.
func structNode(s interface{}) (node, error) {
st := deref(reflect.TypeOf(s))
if st.Kind() != reflect.Struct {
return node{}, fmt.Errorf("expecting struct type, got %s", st.Kind())
}
return node{
Name: st.Name(),
Type: st,
}, nil
}
// listFields takes a reflect.Type parameter that should be a struct type and resolves
// all of it's fields into nodes.
func listFields(st reflect.Type) []node {
fields := make([]node, 0, st.NumField())
for i := 0; i < st.NumField(); i++ {
field := st.Field(i)
// skip unexported fields
if field.PkgPath != "" {
continue
}
fields = append(fields, node{
Name: field.Name,
Type: deref(field.Type),
Tag: field.Tag,
})
}
return fields
}
// walker performs the visit function on the passed in node and each of its children,
// recursively.
func walker(n node, visitFn visit) error {
// Visit the current node.
if err := visitFn(&n); err != nil {
return err
}
// Tell visit we're done with this node and it's children nodes.
defer func() {
// this will never error when nil is passed
_ = visitFn(nil) //nolint:errcheck
}()
switch n.Type.Kind() { //nolint:exhaustive
case reflect.Struct:
for _, field := range listFields(n.Type) {
if err := walker(field, visitFn); err != nil {
return err
}
}
case reflect.Slice, reflect.Array, reflect.Ptr:
t := deref(n.Type.Elem())
n := node{
Name: t.Name(),
Type: t,
}
if t.Kind() == reflect.Struct {
for _, field := range listFields(n.Type) {
if err := walker(field, visitFn); err != nil {
return err
}
}
break
}
if err := walker(n, visitFn); err != nil {
return err
}
default:
}
return nil
}
// walk takes a struct type and a Visit function and walks through the entire type
// performing the Visit function on each field.
func walk(s interface{}, visit visit) error {
n, err := structNode(s)
if err != nil {
return err
}
return walker(n, visit)
}
// deref dereferences a reflection type if it is a pointer, double pointer, etc.
func deref(t reflect.Type) reflect.Type {
for t.Kind() == reflect.Ptr || t.Kind() == reflect.Slice {
t = t.Elem()
}
return t
}
// optstruct holds onto state useful when applying options
type optStruct struct {
tp tagParser
}
// marshalOption is the type for our functional option for the marshal functions of GoQL. It's
// intentionally not publicly exported, as we only want to support our first-party options.
type marshalOption func(*optStruct)
// OptGoqlTagsOnly will cause the marshalling procedure of goql to *only* look at the `goql` struct
// tags when marshalling a struct into a GQL operation. The behavior caused by this option is the
// default behavior of goql, this option is provided for explicitness sake. If you would like
// marshalling to use `goql` struct tags and then to _fall back_ on JSON struct tags if no goql tags
// are present on a struct, then use the OptFallbackJSONTag option.
func OptGoqlTagsOnly(opt *optStruct) {
opt.tp = parseTag
}
// OptFallbackJSONTag causes the marshalling of structs to queries to still respect goql struct tags
// in the same way as default, but if no `goql` struct tag is present, marshalling will try to
// derive the name-in-GQL of that struct field from a `json` struct tag, if a `json` struct tag is
// present. If no `goql` struct tag AND no `json` struct tag are present, then marshalling defaults
// to the same toLowerCamelCase approach as always.
func OptFallbackJSONTag(opt *optStruct) {
opt.tp = parseTagSupportingJSON
}
// MarshalQuery takes a variable that must be a struct type and constructs a GraphQL
// operation using it's fields and graphql struct tags that can be used as a GraphQL
// query operation.
func MarshalQuery(q interface{}, fields Fields) (string, error) {
return MarshalQueryWithOptions(q, fields, OptGoqlTagsOnly)
}
// MarshalMutation takes a variable that must be a struct type and constructs a GraphQL
// operation using it's fields and graphql struct tags that can be used as a GraphQL
// mutation operation.
func MarshalMutation(q interface{}, fields Fields) (string, error) {
return MarshalMutationWithOptions(q, fields, OptGoqlTagsOnly)
}
// MarshalQueryWithOptions takes a variable that must be a struct type and constructs a GraphQL
// operation using it's fields and graphql struct tags that can be used as a GraphQL query
// operation. Additionally, MarshalQueryWithOptions accepts an array of functional options to
// change the marshalling behavior.
func MarshalQueryWithOptions(q interface{}, fields Fields, opts ...marshalOption) (string, error) {
o := optStruct{}
// by putting OptGoqlTagsOnly at the front, we ensure it'll be overridden by subsequent
// user-provided options
opts = append([]marshalOption{OptGoqlTagsOnly}, opts...)
for _, opt := range opts {
if opt != nil {
opt(&o)
}
}
return marshal(q, "query", fields, o.tp)
}
// MarshalMutationWithOptions takes a variable that must be a struct type and constructs a GraphQL
// operation using it's fields and graphql struct tags that can be used as a GraphQL mutation
// operation. Additionally, MarshalMutationWithOptions accepts an array of functional options to
// change the marshalling behavior.
func MarshalMutationWithOptions(q interface{}, fields Fields, opts ...marshalOption) (string, error) {
o := optStruct{}
// by putting OptGoqlTagsOnly at the front, we ensure it'll be overridden by subsequent
// user-provided options
opts = append([]marshalOption{OptGoqlTagsOnly}, opts...)
for _, opt := range opts {
if opt != nil {
opt(&o)
}
}
return marshal(q, "mutation", fields, o.tp)
}
// cache stores the resulting tree of types who have already been through the marshaling
// process.
var cache sync.Map
// marshal takes a variable that must be a struct type and constructs a GraphQL operation
// using it's fields and graphql struct tags. The wrapper variable defines what type of
// GraphQL operation will be returned ("query" or "mutation", although this is not
// explicitly checked since this function is only called from within this package).
func marshal(q interface{}, wrapper string, fields Fields, tagParse tagParser) (string, error) { //nolint:funlen
var operation *field
rt := reflect.TypeOf(q)
// Check to see if this type has already been built.
if cachedOperation, hit := cache.Load(rt); hit {
// Cache hit, use the tree that was already built.
operation = cachedOperation.(*field)
} else {
// Not in cache, need to build by walking through the type and then store it in the
// cache for later use.
var st stack
// The visit func that gets passed to Walk handles the stack management while walking
// through the root node and all of it's children to create the declarations, directives,
// and their tokens which are used to create the GraphQL operation.
visitFn := func(n *node) error {
if n != nil {
f, err := tagParse(n.Tag)
if err != nil && errors.Is(err, errSkipFieldFromTag) {
return nil
} else if err != nil {
return err
}
if f.Decl.Name == "" {
f.Decl.Name = toLowerCamelCase(n.Name)
}
st.push(&f)
} else {
// don't pop the root node
if st.length() == 1 {
return nil
}
// add most recent node to parent
nf := st.pop()
st.apply(func(f *field) {
f.Fields = append(f.Fields, *nf)
})
}
return nil
}
// Walk through the given struct.
if err := walk(q, visitFn); err != nil {
return "", err
}
// The top of the stack at this point will be the top-level field with all of
// the inner fields as children.
operation = st.top()
// Store this built tree for the operation in the cache.
cache.Store(rt, operation)
}
// Get the args from the tokens contained in operation and it's children.
args, err := argsFromTokens(operation.tokens())
if err != nil {
return "", err
}
// The top-level declaration will be the name of the struct (q), we don't need that. We
// need either "query" or "mutation" at the root-level of the operation.
declName := wrapper
// If there are arguments, add them to the root-level "query" or "mutation" operation identifier
// within parenthesis.
if len(args) > 0 {
declName = fmt.Sprintf("%s(%s)", declName, strings.Join(args, ", "))
}
var b strings.Builder
// Construct the actual operation from the fields gathered while walking through q's nodes.
if _, err := operation.tokenizeAsRoot(&b, declName, fields); err != nil {
return "", err
}
return b.String(), nil
}