-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.jl
211 lines (151 loc) · 5.06 KB
/
inference.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# import the modules
import CUDA
using BSON
using DataStructures
using Dates
using Flux
using Glob
using JSON3
using NCDatasets
using Printf
using Random
using Statistics
using Test
# name of the dataset (test or dev)
dataset = "test"
# variable name
varname = "CHL"
# training data
fname_train = expanduser("~/Data/NECCTON_Black_Sea/CHL2/cmems_obs-oc_blk_bgc-plankton_my_l3-olci-300m_P1D/patches_64_64_0.8.nc")
# data to be reconstructed
fname_orig = expanduser("~/Data/NECCTON_Black_Sea/CHL2/cmems_obs-oc_blk_bgc-plankton_my_l3-olci-300m_P1D/$(dataset)_log10.nc")
# directory with the experiments
expdir = expanduser("~/Data/NECCTON_Black_Sea/CHL2/cmems_obs-oc_blk_bgc-plankton_my_l3-olci-300m_P1D/")
# timestamp of the used model and epoch
timestamp = "2023-12-06T152517"
epoch = 100
# number of ensemble members to compute and compte the mean and standard
# deviation
Nsample = 64
# number of ensemble members to keep
Nsample_keep = 64
# resolution of the dataset
# (longitude and latitude are sadly stored in the netcdf file
# as single precision floats with is insufficient for a 300 m resolution
# dataset)
Δlon = 0.0037530265
Δlat = 0.0026990548
Δtime = Day(1)
#---
include("diffusion_model.jl")
CUDA.allowscalar(false)
fname_cv = replace(fname_orig,".nc" => "_add_clouds.nc")
ds = NCDataset(fname_orig)
data_orig = nomissing(ds[varname][:,:,:],NaN)
data_orig = reshape(data_orig,(size(data_orig,1),size(data_orig,2),1,size(data_orig,3)))
close(ds)
ds = NCDataset(fname_cv)
data_cv = nomissing(ds[varname][:,:,:],NaN)
data_cv = reshape(data_cv,(size(data_cv,1),size(data_cv,2),1,size(data_cv,3)))
lonf = repeat(ds["lon"][:],inner=(1,size(data_cv,4)))
latf = repeat(ds["lat"][:],inner=(1,size(data_cv,4)))
time = ds["time"][:];
ds_train = NCDataset(fname_train)
lon_range = extrema(ds_train["lon"][:,:])
lat_range = extrema(ds_train["lat"][:,:])
close(ds_train)
lon = round.(Int, (lonf .- Δlon/2) / Δlon) * Δlon;
lat = round.(Int, (latf .- Δlat/2) / Δlat) * Δlat;
sz = size(data_cv)[1:2]
epoch_str = @sprintf("%05d",epoch)
model_fname = joinpath(expdir,"$timestamp/model-checkpoint-$epoch_str.bson")
fname_cv_out = replace(model_fname,".bson" => "") * "_" * replace(basename(fname_cv),".nc" => "log10_filled.nc")
fname_cv_stat = replace(model_fname,".bson" => "") * "_" * replace(basename(fname_cv),".nc" => "log10_filled-$varname.json")
@show model_fname
BSON.@load model_fname beta train_mean train_std losses
BSON.@load model_fname m
params = JSON3.read(joinpath(dirname(model_fname),"params.json"))
ntime_win = get(params,:ntime_win,1)
#auxdata_loader = nothing
auxdata_loader = AuxData(
(lon,lat,time),(Δlon,Δlat,Δtime),data_cv,
ntime_win;
lon_range = lon_range,
lat_range = lat_range,
cycle = 365.25)
ds = NCDataset(fname_cv,"r")
isfile(fname_cv_out) && rm(fname_cv_out)
dsout = NCDataset(fname_cv_out,"c")
# Dimensions
dsout.dim["lon"] = ds.dim["lon"]
dsout.dim["lat"] = ds.dim["lat"]
dsout.dim["time"] = ds.dim["time"]
# Declare variables
nclon = defVar(dsout,"lon", Float64, ("lon", "time"))
nclat = defVar(dsout,"lat", Float64, ("lat", "time"))
nctime = defVar(dsout,"time", Float64, ("time",), attrib = OrderedDict(
"units" => "days since 1970-01-01",
))
ncdata = defVar(dsout,varname, Float32, ("lon", "lat", "time"), attrib = OrderedDict(
"_FillValue" => Float32(-9999.0),
))
if Nsample_keep > 0
dsout.dim["sample"] = Nsample_keep
ncdatasample = defVar(dsout,varname * "_sample", Float32, ("lon", "lat", "time", "sample"), attrib = OrderedDict(
"_FillValue" => Float32(-9999.0),
))
end
ncdataerror = defVar(dsout,varname * "_error", Float32, ("lon", "lat", "time"), attrib = OrderedDict(
"_FillValue" => Float32(-9999.0),
))
if ndims(ds["lon"]) == 2
nclon[:,:] = ds["lon"][:,:]
nclat[:,:] = ds["lat"][:,:]
else
nclon[:,:] = repeat(ds["lon"][:],inner=(1,ds.dim["time"]))
nclat[:,:] = repeat(ds["lat"][:],inner=(1,ds.dim["time"]))
end
nctime[:] = ds["time"][:]
close(ds)
# number of steps
T = length(beta)
device = gpu
model = m |> device
alpha,alpha_bar,sigma = noise_schedule(beta)
training = false
rng = Random.GLOBAL_RNG
dd = DatasetLoader(data_cv,rng,T,train_mean,train_std,device,alpha_bar,auxdata_loader,training)
ntimes = 1:size(data_cv,4)
# time loop
for n = ntimes
local x0
local xc
local mx
local stdx
x0, = getobs_orig(dd,n)
x0 = x0 |> device
xc = generate_cond(
device, beta, model, train_mean, train_std, x0, Nsample;
x_diff = nothing,
);
if any(isnan,xc)
@warn "NaN in reconstruction at step $n"
open(fname_cv_stat,"w") do f
JSON3.pretty(f,OrderedDict(
"cvrms" => 9999
))
end
break
end
xc = xc[:,:,1:1,:] # first slice is current time
xc = cpu(xc)
mx = mean(xc,dims=4)[:,:,1,1]
stdx = std(xc,dims=4)[:,:,1,1]
@show n,size(data_cv,4),extrema(mx)
ncdata[:,:,n] = mx
ncdataerror[:,:,n] = stdx
if Nsample_keep > 0
ncdatasample[:,:,n,:] = xc[:,:,1,1:Nsample_keep]
end
end
close(dsout)