-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathheatmap_turtle.R
232 lines (175 loc) · 6.89 KB
/
heatmap_turtle.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# 🐢 Turtles sightings 🐢
# ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
#
# This notebooks illustrates the computation of a heatmap using observation
# locations.
#
# Dataset: Marine Turtles National Biodiversity Network Trust. Marine Turtles.
# National Biodiversity Network Trust, Newark, UK.
# https://doi.org/10.15468/fyt9hw,
# https://portal.obis.org/dataset/1cfc4d23-9fcd-42b2-95bf-9c4ee9bc50f6
# ––––––––––––––––––––––––––––––––––––––––––––––––––
library(logger)
library(ggplot2)
library(ggmap)
library(JuliaCall)
library(oce)
# library(ncdf4)
library(ocedata)
data("coastlineWorld")
julia_command("using DIVAnd")
julia_command("using PyPlot")
julia_command("using Statistics")
julia_command("using DelimitedFiles")
julia_command("using LinearAlgebra")
julia_command("using Random")
options(download.file.method="wget") # Necessary to download files
# Create directories
datadir <- "./data/"
figdir <- "./figures/"
resdir <- "./results/"
dir.create(datadir)
dir.create(figdir)
dir.create(resdir)
# Download the data file
# (hosted on ULiege OwnCloud instance)
turtlefile <- file.path(datadir, "turtles.dat")
doxbaseURL <- "https://dox.uliege.be/index.php/s/"
dataurl <- paste(doxbaseURL,"IsWWlNxWeQDuarJ/download", sep = "")
if (!file.exists(turtlefile)){
log_info("Downloading data file")
download.file(url = dataurl, destfile = turtlefile)
}else{
log_info("Data file already downloaded")
}
# Read the CSV file
AA = read.csv(turtlefile, header = FALSE, sep = "\t", dec = ".", comment.char = "")
log_info("{dim(AA)}")
lon=AA[,1]
lat=AA[,2]
log_info("Mean longitude: {mean(lon)}")
log_info("Mean latitude: {mean(lat)}")
# Make a simple plot
deltalon <- 1.
deltalat <- 1.
domain <- c(left = min(lon) - deltalon, bottom = min(lat) - deltalat, right = max(lon) + deltalon, top = max(lat) + deltalat)
log_info("Creating figure")
ggplot() +
geom_point(aes(x = lon, y = lat), size = 1, colour="orange") +
xlab("Longitude (°N)") +
ylab("Latitude (°E)") +
coord_cartesian(xlim =c(domain["left"], domain["right"]), ylim = c(domain["bottom"], domain["top"])) +
borders("world",fill="black",colour="black") +
ggtitle("Location of the observations")
ggsave(file.path(figdir, "turtle_observations.png"))
# A simple heatmap without land mask
# ====================================
# Set domain of interest
lonmin <- -14.
latmin <- 47.
LX <- 18.
LY <- 15.
lonmax <- lonmin + LX
latmax <- latmin + LY
NX <- 300
NY <- 250
dx <- LX/NX
dy <- LY/NY
# Bounding box
# Defined in domain variable
xo <- lon
yo <- lat
# Eliminate points out of the box
sel <- (xo>lonmin) & (xo < lonmax) & (yo > latmin) & (yo < latmax)
xo <- xo[sel]
yo <- yo[sel]
inflation <- rep(1., length(xo))
# Heatmap
# –––––––––
xg <- seq(lonmin + dx/2, lonmax, dx)
yg <- seq(latmin + dy/2, latmax, dy)
julia_assign("xg", xg)
julia_assign("yg", yg)
julia_command("mask, (pm,pn), (xi,yi) = DIVAnd.DIVAnd_rectdom(xg, yg);")
# Now prepare land mask
# =======================
bathname <- file.path(datadir, "gebco_30sec_4.nc")
bathnameURL <- "https://dox.uliege.be/index.php/s/RSwm4HPHImdZoQP/download"
if (!file.exists(bathname)){
log_info("Downloading bathymetry file")
download.file(url = bathnameURL, destfile = bathname)
}else{
log_info("Bathymetry file already downloaded")
}
# Prepare the land-sea mask
# Extract the bathymetry
julia_assign("bathname", bathname)
julia_command("bx, by, b = load_bath(bathname,true,xg,yg);")
bx = julia_eval("bx")
by = julia_eval("by")
b = julia_eval("b")
# Allocate mask
mask <- matrix(TRUE, NX, NY)
for (j in 1:dim(b)[2]) {
for (i in 1:dim(b)[1]) {
mask[i,j] = b[i,j] >= 0
}
}
col <- "lightgray"
p <- "+proj=merc"
mapPlot(coastlineWorld, projection=p, longitudelim=range(lonmin,lonmax),
latitudelim=range(latmin, latmax), col=col)
mtext("Land-sea mask", line=line, adj=1, col=pcol, font=font)
# Compute the density map
julia_assign("xo", xo)
julia_assign("yo", yo)
julia_assign("inflation", inflation)
julia_command("@time dens1,LHM,LCV,LSCV = DIVAnd.DIVAnd_heatmap(mask,(pm,pn),(xi,yi),(xo,yo),inflation,0;Ladaptiveiterations=1);")
# From Julia variable to R variable
dens1 = julia_eval("dens1")
LHM = julia_eval("LHM")
LCV = julia_eval("LCV")
LSCV = julia_eval("LSCV")
# Need to find a way to create a nice plot
# Add a plot showing the bathymetry
p <- "+proj=merc"
mapPlot(coastlineWorld, projection=p, longitudelim=c(-80,0), latitudelim=c(0,45), col=col)
mtext(p, line=line, adj=1, col=pcol, font=font)
# RESTART HERE
# NEED TO DO NICE PLOTS
#log_info((dim(b)))
# First heatmap with uniform and automatic bandwidth
# ––––––––––––––––––––––––––––––––––––––––––––––––––––
julia_assign("mask", mask)
julia_command("@time dens1, LHM, LCV, LSCV= DIVAnd_heatmap(mask, (pm,pn), (xi,yi), (xo,yo), inflation,0; Ladaptiveiterations=0)")
figure()
pcolor(xip,yip,log.(dens1)),colorbar()
xlabel("Longitude")
ylabel("Latitude")
#scatter(xo,yo,s=1,c="white")
title("Density (log)")
@show LCV,LSCV,mean(LHM[1]),mean(LHM[2])
# Now with adapted bandwidth
# ============================
julia_command("@time dens1,LHM,LCV,LSCV= DIVAnd_heatmap(mask,(pm,pn),(xi,yi),(xo,yo),inflation,0;Ladaptiveiterations=1)
# show LCV,LSCV,mean(LHM[1]),mean(LHM[2])
# But how much iterations ? Cross validation indicators can help
# ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
julia_command("dens1,LHM,LCV,LSCV= DIVAnd_heatmap(mask,(pm,pn),(xi,yi),(xo,yo),inflation,0;Ladaptiveiterations=0)")
julia_command("dens1,LHM,LCV,LSCV= DIVAnd_heatmap(mask,(pm,pn),(xi,yi),(xo,yo),inflation,0;Ladaptiveiterations=1)")
julia_command("dens1,LHM,LCV,LSCV= DIVAnd_heatmap(mask,(pm,pn),(xi,yi),(xo,yo),inflation,0;Ladaptiveiterations=2)")
julia_command("dens1,LHM,LCV,LSCV= DIVAnd_heatmap(mask,(pm,pn),(xi,yi),(xo,yo),inflation,0;Ladaptiveiterations=3)")
julia_command("dens1,LHM,LCV,LSCV= DIVAnd_heatmap(mask,(pm,pn),(xi,yi),(xo,yo),inflation,0;Ladaptiveiterations=4)")
julia_command("dens1,LHM,LCV,LSCV= DIVAnd_heatmap(mask,(pm,pn),(xi,yi),(xo,yo),inflation,0;Ladaptiveiterations=5)")
# 4 iterations yield highest likelyhood and lowest rms
# ======================================================
dens1,LHM,LCV,LSCV= DIVAnd_heatmap(mask,(pm,pn),(xi,yi),(xo,yo),inflation,0;Ladaptiveiterations=4)
pcolor(xip,yip,log.(LHM[1].*LHM[2])),colorbar()
xlabel("Longitude")
ylabel("Latitude")
title("Surface of bandwidth (log)")
# Important note
# ≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡≡
#
# There is no information used on the effort of looking for turtles. Obviously
# more are seen close to coastlines because of easier spotting.