我们知道圆的面积计算公式为:
S = πr²
当我们知道半径r的值时,就可以根据公式计算出面积。假设我们需要计算3个不同大小的圆的面积:
r1 = 12.34
r2 = 9.08
r3 = 73.1
s1 = 3.14 * r1 * r1
s2 = 3.14 * r2 * r2
s3 = 3.14 * r3 * r3
当代码出现有规律的重复的时候,你就需要当心了,每次写3.14 * x * x不仅很麻烦,而且,如果要把3.14改成3.14159265359的时候,得全部替换。
有了函数,我们就不再每次写s = 3.14 * x * x,而是写成更有意义的函数调用 s = area_of_circle(x),而函数 area_of_circle 本身只需要写一次,就可以多次调用。
抽象是数学中非常常见的概念。举个例子:
计算数列的和,比如:1 + 2 + 3 + ... + 100,写起来十分不方便,于是数学家发明了求和符号∑,可以把1 + 2 + 3 + ... + 100记作:
100
∑n
n=1
这种抽象记法非常强大,因为我们看到∑就可以理解成求和,而不是还原成低级的加法运算。
而且,这种抽象记法是可扩展的,比如:
100
∑(n²+1)
n=1
还原成加法运算就变成了:
(1 x 1 + 1) + (2 x 2 + 1) + (3 x 3 + 1) + ... + (100 x 100 + 1)
可见,借助抽象,我们才能不关心底层的具体计算过程,而直接在更高的层次上思考问题。
写计算机程序也是一样,函数就是最基本的一种代码抽象的方式。
Python不但能非常灵活地定义函数,而且本身内置了很多有用的函数,可以直接调用。
要调用一个函数,需要知道函数的名称和参数,比如求绝对值的函数 abs,它接收一个参数。
>>> abs(100)
100
>>> abs(-20)
20
>>> abs(12.34)
12.34
调用函数的时候,如果传入的参数数量不对,会报TypeError的错误,并且Python会明确地告诉你:abs()有且仅有1个参数,但给出了两个:
>>> abs(1, 2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: abs() takes exactly one argument (2 given)
如果传入的参数数量是对的,但参数类型不能被函数所接受,也会报TypeError的错误,并且给出错误信息:str是错误的参数类型:
>>> abs('a')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: bad operand type for abs(): 'str'
比较函数 cmp(x, y) 就需要两个参数,如果 x<y,返回 -1,如果 x==y,返回 0,如果 x>y,返回 1:
>>> cmp(1, 2)
-1
>>> cmp(2, 1)
1
>>> cmp(3, 3)
0
把其他数据类型转换为整数:
>>> int('123')
123
>>> int(12.34)
12
把其他类型转换成 str:
>>> str(123)
'123'
>>> str(1.23)
'1.23'
接受一个list作为参数,并返回list所有元素之和。请计算 1*1 + 2*2 + 3*3 + ... + 100*100
。
L = []
n = 1
while n <= 100:
L.append(n * n)
n += 1
print sum(L)
# 338350
在Python中,定义一个函数要使用 def
语句,依次写出函数名
、括号
、括号中的参数
和冒号
:,然后,在缩进块中编写函数体,函数的返回值用 return
语句返回。
我们以自定义一个求绝对值的 my_abs 函数为例:
def my_abs(x):
if x >= 0:
return x
else:
return -x
请注意,函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。因此,函数内部通过条件判断和循环可以实现非常复杂的逻辑。
如果没有return语句,函数执行完毕后也会返回结果,只是结果为 None。
return None可以简写为return。
请定义一个 square_of_sum 函数,它接受一个list,返回list中每个元素平方的和。
def square_of_sum(L):
sum = 0
for item in L:
sum += item * item
return sum
print square_of_sum([1, 2, 3, 4, 5])
print square_of_sum([-5, 0, 5, 15, 25])
在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的坐标:
# math包提供了sin()
和 cos()
函数,我们先用import引用它:
import math
def move(x, y, step, angle):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny
这样我们就可以同时获得返回值:
>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print x, y
151.961524227 70.0
但其实这只是一种假象,Python函数返回的仍然是单一值:
>>> r = move(100, 100, 60, math.pi / 6)
>>> print r
(151.96152422706632, 70.0)
用print打印返回结果,原来返回值是一个tuple!
但是,在语法上,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值,所以,Python的函数返回多值其实就是返回一个tuple,但写起来更方便。
一元二次方程的定义是:ax² + bx + c = 0
请编写一个函数,返回一元二次方程的两个解。
注意:Python的math包提供了sqrt()函数用于计算平方根。
import math
def quadratic_equation(a, b, c):
sq = math.sqrt(b * b - 4 * a * c)
x1 = (-b + sq) / (2 * a)
x2 = (-b - sq) / (2 * a)
return x1, x2
print quadratic_equation(2, 3, 0)
# (0.0, -1.5)
print quadratic_equation(1, -6, 5)
# (5.0, 1.0)
一个函数在内部调用自身本身,这个函数就是递归函数。
举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n
,用函数 fact(n)表示,可以看出:
fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n
所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理。
于是,fact(n)用递归的方式写出来就是:
def fact(n):
if n==1:
return 1
return n * fact(n - 1)
上面就是一个递归函数。可以试试:
>>> fact(1)
1
>>> fact(5)
120
递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。
使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试计算 fact(10000)。
笔记作者:zx1984
python零基础入门到精通
https://ke.qq.com/course/206902
原讲师:廖雪峰