From 9e630ec4d2b9bd3c14dd3614bc9ecec016896b5d Mon Sep 17 00:00:00 2001 From: John Peters Date: Fri, 16 Aug 2024 17:26:58 -0500 Subject: [PATCH 01/10] "Added notebooks" --- notebooks/colab_finetuning.ipynb | 2024 ++++++++++++++++++++++++ notebooks/colab_metl_predicting.ipynb | 2036 +++++++++++++++++++++++++ 2 files changed, 4060 insertions(+) create mode 100644 notebooks/colab_finetuning.ipynb create mode 100644 notebooks/colab_metl_predicting.ipynb diff --git a/notebooks/colab_finetuning.ipynb b/notebooks/colab_finetuning.ipynb new file mode 100644 index 0000000..6e43cd3 --- /dev/null +++ b/notebooks/colab_finetuning.ipynb @@ -0,0 +1,2024 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "e30ea18e-6b5a-47d4-b7a4-1330804b5602", + "metadata": { + "id": "e30ea18e-6b5a-47d4-b7a4-1330804b5602" + }, + "source": [ + "# Finetune on experimental data\n", + "This notebook demonstrates how to finetune METL models on experimental data." + ] + }, + { + "cell_type": "code", + "source": [ + "# @title Cloning metl\n", + "!git clone https://github.com/gitter-lab/metl.git\n", + "%cd metl" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vZx7K4mpi4w1", + "outputId": "a5c16482-b458-4867-aa34-6e0274126d4f", + "cellView": "form" + }, + "id": "vZx7K4mpi4w1", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Cloning into 'metl'...\n", + "remote: Enumerating objects: 370, done.\u001b[K\n", + "remote: Counting objects: 100% (370/370), done.\u001b[K\n", + "remote: Compressing objects: 100% (250/250), done.\u001b[K\n", + "remote: Total 370 (delta 135), reused 305 (delta 84), pack-reused 0 (from 0)\u001b[K\n", + "Receiving objects: 100% (370/370), 18.03 MiB | 17.74 MiB/s, done.\n", + "Resolving deltas: 100% (135/135), done.\n", + "/content/metl\n" + ] + } + ] + }, + { + "cell_type": "code", + "source": [ + "# @title Setting up conda to download notebook dependencies (this takes a while)\n", + "!wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ./miniconda.sh\n", + "!chmod +x miniconda.sh\n", + "!bash ./miniconda.sh -b -u -p /usr/local\n", + "!conda env update -q -n base -f ./environment.yml" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vl7ugAoEjNFQ", + "outputId": "894a7c19-e680-4ab2-a4e1-88f55507949d", + "cellView": "form" + }, + "id": "vl7ugAoEjNFQ", + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "--2024-08-16 16:51:45-- https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "Resolving repo.anaconda.com (repo.anaconda.com)... 104.16.32.241, 104.16.191.158, 2606:4700::6810:bf9e, ...\n", + "Connecting to repo.anaconda.com (repo.anaconda.com)|104.16.32.241|:443... connected.\n", + "HTTP request sent, awaiting response... 200 OK\n", + "Length: 146836934 (140M) [application/octet-stream]\n", + "Saving to: ‘./miniconda.sh’\n", + "\n", + "./miniconda.sh 100%[===================>] 140.03M 315MB/s in 0.4s \n", + "\n", + "2024-08-16 16:51:46 (315 MB/s) - ‘./miniconda.sh’ saved [146836934/146836934]\n", + "\n", + "PREFIX=/usr/local\n", + "Unpacking payload ...\n", + "\n", + "Installing base environment...\n", + "\n", + "Preparing transaction: ...working... done\n", + "Executing transaction: ...working... done\n", + "installation finished.\n", + "WARNING:\n", + " You currently have a PYTHONPATH environment variable set. This may cause\n", + " unexpected behavior when running the Python interpreter in Miniconda3.\n", + " For best results, please verify that your PYTHONPATH only points to\n", + " directories of packages that are compatible with the Python interpreter\n", + " in Miniconda3: /usr/local\n", + "Channels:\n", + " - conda-forge\n", + " - defaults\n", + " - pytorch\n", + "Platform: linux-64\n", + "Collecting package metadata (repodata.json): ...working... done\n", + "Solving environment: ...working... done\n", + "Preparing transaction: ...working... done\n", + "Verifying transaction: ...working... done\n", + "Executing transaction: ...working... By downloading and using the CUDA Toolkit conda packages, you accept the terms and conditions of the CUDA End User License Agreement (EULA): https://docs.nvidia.com/cuda/eula/index.html\n", + "\n", + "done\n", + "Installing pip dependencies: ...working... done\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "432eebaf-00b8-42bf-b927-fd651e6ab94d", + "metadata": { + "ExecuteTime": { + "end_time": "2024-02-16T22:51:36.573559Z", + "start_time": "2024-02-16T22:51:36.569490Z" + }, + "jupyter": { + "outputs_hidden": false + }, + "id": "432eebaf-00b8-42bf-b927-fd651e6ab94d" + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c566507e-1012-4415-82ba-7498950e0b6c", + "metadata": { + "id": "c566507e-1012-4415-82ba-7498950e0b6c" + }, + "outputs": [], + "source": [ + "import os\n", + "import sys\n", + "\n", + "sys.path.append('/usr/local/lib/python3.9/site-packages')\n", + "# define the name of the project root directory\n", + "project_root_dir_name = \"metl\"\n", + "\n", + "# find the project root by checking each parent directory\n", + "current_dir = os.getcwd()\n", + "while os.path.basename(current_dir) != project_root_dir_name and current_dir != os.path.dirname(current_dir):\n", + " current_dir = os.path.dirname(current_dir)\n", + "\n", + "# change the current working directory to the project root directory\n", + "if os.path.basename(current_dir) == project_root_dir_name:\n", + " os.chdir(current_dir)\n", + "else:\n", + " print(\"project root directory not found\")\n", + "\n", + "# add the project code folder to the system path so imports work\n", + "module_path = os.path.abspath(\"code\")\n", + "if module_path not in sys.path:\n", + " sys.path.append(module_path)" + ] + }, + { + "cell_type": "markdown", + "id": "19876208-66f9-46b5-8f50-8e798fa815a4", + "metadata": { + "id": "19876208-66f9-46b5-8f50-8e798fa815a4" + }, + "source": [ + "# Acquire an experimental dataset\n", + "\n", + "For demonstration purposes, this repository contains the [avGFP dataset](../data/dms_data/avgfp) from [Sarkisyan et al. (2016)](https://doi.org/10.1038/nature17995).\n", + "See the [metl-pub](https://github.com/gitter-lab/metl-pub) repository to access the other experimental datasets we used in our preprint.\n", + "See the README in the [dms_data](../data/dms_data) directory for information about how to use your own experimental dataset." + ] + }, + { + "cell_type": "markdown", + "id": "d6abf8b1-aa2d-4055-9184-d962ba0d4582", + "metadata": { + "id": "d6abf8b1-aa2d-4055-9184-d962ba0d4582" + }, + "source": [ + "# Acquire a pretrained model\n", + "Pretrained METL models are available in the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository. You can use one of those, or you can pretrain your own METL model (see [pretraining.ipynb](pretraining.ipynb)).\n", + "\n", + "For demonstration purposes, we include a pretrained avGFP METL-Local model from the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository in the [pretrained_models](../pretrained_models) directory. This model is `METL-L-2M-3D-GFP` (UUID: `Hr4GNHws`).\n", + "It is the avGFP METL-Local source model we used for the analysis in our preprint.\n", + "\n", + "We will show how to finetune this model using the [experimental avGFP dataset](../data/dms_data/avgfp)." + ] + }, + { + "cell_type": "markdown", + "id": "23a30235-357a-4326-a4ff-77ab26eb5d7f", + "metadata": { + "id": "23a30235-357a-4326-a4ff-77ab26eb5d7f" + }, + "source": [ + "# Training arguments\n", + "\n", + "The script for finetuning on experimental data is [train_target_model.py](train_target_model.py). This script has a number of arguments you can view by uncommenting and running the below cell. There are additional arguments related to architecture that won't show up if you run the command, but you can view them in [models.py](../code/models.py) in the `TransferModel` class." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "bca8aeea-3dc3-47eb-915c-d80132be8fef", + "metadata": { + "id": "bca8aeea-3dc3-47eb-915c-d80132be8fef" + }, + "outputs": [], + "source": [ + "# !python code/train_target_model.py -h" + ] + }, + { + "cell_type": "markdown", + "id": "7ec8c31b-2da2-4ba7-9f4e-39e30dce8056", + "metadata": { + "id": "7ec8c31b-2da2-4ba7-9f4e-39e30dce8056" + }, + "source": [ + "We set up finetuning arguments for this example in [finetune_avgfp_local.txt](../args/pretrain_avgfp_local.txt) in the [args](../args) directory. This argument file can be used directly with [train_target_model.py](train_target_model.py) by calling the command `!python code/train_target_model.py @args/finetune_avgfp_local.txt` (we do this in the next section).\n", + "\n", + "Uncomment and run the cell below to view the contents of the argument file. The sections below will walk through and explain the key arguments." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a06a897f-877d-4e41-9bee-4d3eabeead7d", + "metadata": { + "id": "a06a897f-877d-4e41-9bee-4d3eabeead7d" + }, + "outputs": [], + "source": [ + "# with open(\"args/finetune_avgfp_local.txt\", \"r\") as file:\n", + "# contents = file.read()\n", + "# print(contents)" + ] + }, + { + "cell_type": "markdown", + "id": "c2610124-fa2c-4709-98fc-bae51b258338", + "metadata": { + "id": "c2610124-fa2c-4709-98fc-bae51b258338" + }, + "source": [ + "## Dataset arguments" + ] + }, + { + "cell_type": "markdown", + "id": "9f56ee90-90be-41fa-bc99-c13f94e14976", + "metadata": { + "id": "9f56ee90-90be-41fa-bc99-c13f94e14976" + }, + "source": [ + "\n", + "Specify the dataset name and the train/val/test split. The dataset must be defined in [datasets.yml](../data/dms_data/datasets.yml). For demonstration purposes, we are using one of the reduced dataset size splits with a dataset size of 160 (train size of 128).\n", + "```\n", + "--ds_name\n", + "avgfp\n", + "--split_dir\n", + "data/dms_data/avgfp/splits/resampled/resampled_ds160_val0.2_te0.1_w1abc2f4e9a64_s1_r8099/resampled_ds160_val0.2_te0.1_w1abc2f4e9a64_s1_r8099_rep_0\n", + "```\n", + "\n", + "Specify the names of the train, validation, and test set files in the split directory. Using \"auto\" for the test_name will select the super test set (\"stest.txt\") if it exists in the split directory, otherwise it will use the standard test set (\"test.txt\").\n", + "\n", + "```\n", + "--train_name\n", + "train\n", + "--val_name\n", + "val\n", + "--test_name\n", + "test\n", + "```\n", + "\n", + "The name of the target column in the dataset dataframe. The model will be finetuned to predict the score in this column.\n", + "\n", + "```\n", + "--target_names\n", + "score\n", + "```\n", + "\n", + "The METL-Local model we are finetuning uses 3D structure-based relative position embeddings, so we need to specify the PDB filename. This PDB file is in the [data/pdb_files](../data/pdb_files) directory, which the script checks by default, so there is no need to specify the full path. You can also just specify \"auto\" to use the PDB file defined for this dataset in [datasets.yml](../data/dms_data/datasets.yml).\n", + "\n", + "```\n", + "--pdb_fn\n", + "1gfl_cm.pdb\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "890cea13-feae-4e54-bf0f-dcbe97f4409f", + "metadata": { + "id": "890cea13-feae-4e54-bf0f-dcbe97f4409f" + }, + "source": [ + "## Network architecture arguments" + ] + }, + { + "cell_type": "markdown", + "id": "72ee9762-cae7-4e21-8435-f6dd49781b8c", + "metadata": { + "id": "72ee9762-cae7-4e21-8435-f6dd49781b8c" + }, + "source": [ + "For finetuning, we implemented a special model `transfer_model` that handles pretrained checkpoints with top nets.\n", + "```\n", + "--model_name\n", + "transfer_model\n", + "```\n", + "\n", + "The pretrained checkpoint can be a PyTorch checkpoint (.pt file) downloaded from the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository or a PyTorch Lightning checkpoint (.ckpt file) obtained from pretraining a model with this repository.\n", + "```\n", + "--pretrained_ckpt_path\n", + "pretrained_models/Hr4GNHws.pt\n", + "```\n", + "\n", + "The backbone cutoff determines where to cutoff the pretrained model and place the new prediction head. For METL-Local models, we recommend backbone cutoff -1, and for METL-Global models we recommend backbone cutoff -2.\n", + "\n", + "```\n", + "--backbone_cutoff\n", + "-1\n", + "```\n", + "\n", + "The remaining arguments determine the encoding, which should be set to `int_seqs`, whether to use dropout after the backbone cutoff, and the architecture of the new top net. You can leave these values as-is to match what we did for the preprint.\n", + "\n", + "```\n", + "--encoding\n", + "int_seqs\n", + "--dropout_after_backbone\n", + "--dropout_after_backbone_rate\n", + "0.5\n", + "--top_net_type\n", + "linear\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "8d94c112-9770-4a5f-93e0-acf4d9acae16", + "metadata": { + "id": "8d94c112-9770-4a5f-93e0-acf4d9acae16" + }, + "source": [ + "## Finetuning strategy arguments" + ] + }, + { + "cell_type": "markdown", + "id": "7bb96cb6-7815-4efa-9b6f-305df9bb3050", + "metadata": { + "id": "7bb96cb6-7815-4efa-9b6f-305df9bb3050" + }, + "source": [ + "We implemented a dual-phase finetuning strategy. During the first phase, the backbone weights are frozen and only the top net is trained. During the second phase, all the network weights are unfrozen and trained at a reduced learning rate.\n", + "\n", + "The unfreeze_backbone_at_epoch argument determines the training epoch at which to unfreeze the backbone. We train the models for 500 epochs, so the backbone is unfrozen halfway through at epoch 250.\n", + "\n", + "```\n", + "--finetuning\n", + "--finetuning_strategy\n", + "backbone\n", + "--unfreeze_backbone_at_epoch\n", + "250\n", + "--backbone_always_align_lr\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "f51d4584-a0ce-45c3-8fb7-8c34d3a984c3", + "metadata": { + "id": "f51d4584-a0ce-45c3-8fb7-8c34d3a984c3" + }, + "source": [ + "## Optimization arguments" + ] + }, + { + "cell_type": "markdown", + "id": "d90d10e8-21f3-4b9e-8134-99cb053bef13", + "metadata": { + "id": "d90d10e8-21f3-4b9e-8134-99cb053bef13" + }, + "source": [ + "Basic optimizer arguments include the batch size, learning rate, and maximum number of epochs to train for. Unless early stopping is enabled, the model will train for the given number of epochs.\n", + "\n", + "```\n", + "--optimizer\n", + "adamw\n", + "--weight_decay\n", + "0.1\n", + "--batch_size\n", + "128\n", + "--learning_rate\n", + "0.001\n", + "--max_epochs\n", + "500\n", + "--gradient_clip_val\n", + "0.5\n", + "```\n", + "\n", + "The learning rate scheduler we used for finetuning is a dual phase learning rate schedule that matches the dual phase finetuning strategy. Each phase has a linear learning rate warmup for 1% of the total steps in that phase. There is also a cosine decay for the learning rate for each phase. The phase 2 learning rate is 10% of the phase 1 learning rate.\n", + "\n", + "```\n", + "--lr_scheduler\n", + "dual_phase_warmup_constant_cosine_decay\n", + "--warmup_steps\n", + ".01\n", + "--phase2_lr_ratio\n", + "0.1\n", + "\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "16327f53-7beb-412e-a925-12884e66d70b", + "metadata": { + "id": "16327f53-7beb-412e-a925-12884e66d70b" + }, + "source": [ + "## Logging arguments" + ] + }, + { + "cell_type": "markdown", + "id": "132db93c-85e6-4658-a31e-9b103df34cb7", + "metadata": { + "id": "132db93c-85e6-4658-a31e-9b103df34cb7" + }, + "source": [ + "We have built in functionality for tracking model training with Weights & Biases. If you have a Weights and Biases account, set the environment variable `WANDB_API_KEY` to your API key and set the flag `--use_wandb` instead of `--no_use_wandb` below.\n", + "\n", + "```\n", + "--no_use_wandb\n", + "--wandb_project\n", + "metl-target\n", + "--wandb_online\n", + "--experiment\n", + "default\n", + "```\n", + "\n", + "The below argument determines where to place the log directory locally.\n", + "```\n", + "--log_dir_base\n", + "output/training_logs\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "53a2fda3-6dfa-46d5-ad3d-3055eda0b29a", + "metadata": { + "id": "53a2fda3-6dfa-46d5-ad3d-3055eda0b29a" + }, + "source": [ + "# Running training" + ] + }, + { + "cell_type": "markdown", + "id": "8d3d8d23-9d54-4888-842d-4fc8fd843b40", + "metadata": { + "id": "8d3d8d23-9d54-4888-842d-4fc8fd843b40" + }, + "source": [ + "All the arguments described above are contained in [finetune_avgfp_local.txt](../args/pretrain_avgfp_local.txt), which can be fed directly into [train_target_model.py](train_target_model.py).\n", + "\n", + "PyTorch Lightning has a built-in progress bar that is convenient for seeing training progress, but it does not display correctly in Jupyter when calling the script with `!python`. We are going to disable the progress bar for by setting the flag `--enable_progress_bar false`. Instead, we implemented a simple print statement to track training progress, which we will enable with the flag `--enable_simple_progress_messages`.\n", + "\n", + "The [train_target_model.py](../code/train_target_model.py) script can support running on Apple Silicon with acceleration via MPS, but the version of PyTorch used in this environment is slightly outdated and does not support all MPS operations, so MPS support has been disabled. The script will run on GPU via CUDA if available, otherwise it will use CPUs.\n", + "\n", + "To speed up training for demo purposes, we also override `--max_epochs 50` and `--unfreeze_backbone_at_epoch 25`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "977b4d8d-4662-4e03-955c-dc4a8ae7c1dc", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "977b4d8d-4662-4e03-955c-dc4a8ae7c1dc", + "outputId": "116b7cd5-8d91-4f3d-cbea-8ecc90671343" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Random seed not specified, using: 806881872\n", + "Global seed set to 806881872\n", + "Created model UUID: SrcZPH8V\n", + "Created log directory: output/training_logs/SrcZPH8V\n", + "Final UUID: SrcZPH8V\n", + "Final log directory: output/training_logs/SrcZPH8V\n", + "Trainer already configured with model summary callbacks: []. Skipping setting a default `ModelSummary` callback.\n", + "GPU available: True (cuda), used: True\n", + "TPU available: False, using: 0 TPU cores\n", + "IPU available: False, using: 0 IPUs\n", + "HPU available: False, using: 0 HPUs\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", + "Loading `train_dataloader` to estimate number of stepping batches.\n", + "/usr/local/lib/python3.9/site-packages/torch/utils/data/dataloader.py:563: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.\n", + " warnings.warn(_create_warning_msg(\n", + "/usr/local/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py:1892: PossibleUserWarning: The number of training batches (1) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.\n", + " rank_zero_warn(\n", + "Number of training steps is 50\n", + "Number of warmup steps is 0.5\n", + "Second warmup phase starts at step 25\n", + "total_steps 50\n", + "phase1_total_steps 25\n", + "phase2_total_steps 25\n", + "┏━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━┓\n", + "┃\u001b[1;35m \u001b[0m\u001b[1;35m \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mName \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mType \u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35mParams\u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35m In sizes\u001b[0m\u001b[1;35m \u001b[0m┃\u001b[1;35m \u001b[0m\u001b[1;35m Out sizes\u001b[0m\u001b[1;35m \u001b[0m┃\n", + "┡━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━┩\n", + "│\u001b[2m \u001b[0m\u001b[2m0\u001b[0m\u001b[2m \u001b[0m│ model │ TransferModel │ 2.4 M │\u001b[37m \u001b[0m\u001b[37m[128, 237]\u001b[0m\u001b[37m \u001b[0m│\u001b[37m \u001b[0m\u001b[37m [128, 1]\u001b[0m\u001b[37m \u001b[0m│\n", + "│\u001b[2m \u001b[0m\u001b[2m1\u001b[0m\u001b[2m \u001b[0m│ model.model │ SequentialWithArgs │ 2.4 M │\u001b[37m \u001b[0m\u001b[37m[128, 237]\u001b[0m\u001b[37m \u001b[0m│\u001b[37m \u001b[0m\u001b[37m [128, 1]\u001b[0m\u001b[37m \u001b[0m│\n", + "│\u001b[2m \u001b[0m\u001b[2m2\u001b[0m\u001b[2m \u001b[0m│ model.model.backbone │ SequentialWithArgs │ 2.4 M │\u001b[37m \u001b[0m\u001b[37m[128, 237]\u001b[0m\u001b[37m \u001b[0m│\u001b[37m \u001b[0m\u001b[37m[128, 256]\u001b[0m\u001b[37m \u001b[0m│\n", + "│\u001b[2m \u001b[0m\u001b[2m3\u001b[0m\u001b[2m \u001b[0m│ model.model.dropout │ Dropout │ 0 │\u001b[37m \u001b[0m\u001b[37m[128, 256]\u001b[0m\u001b[37m \u001b[0m│\u001b[37m \u001b[0m\u001b[37m[128, 256]\u001b[0m\u001b[37m \u001b[0m│\n", + "│\u001b[2m \u001b[0m\u001b[2m4\u001b[0m\u001b[2m \u001b[0m│ model.model.flatten │ Flatten │ 0 │\u001b[37m \u001b[0m\u001b[37m[128, 256]\u001b[0m\u001b[37m \u001b[0m│\u001b[37m \u001b[0m\u001b[37m[128, 256]\u001b[0m\u001b[37m \u001b[0m│\n", + "│\u001b[2m \u001b[0m\u001b[2m5\u001b[0m\u001b[2m \u001b[0m│ model.model.prediction │ Linear │ 257 │\u001b[37m \u001b[0m\u001b[37m[128, 256]\u001b[0m\u001b[37m \u001b[0m│\u001b[37m \u001b[0m\u001b[37m [128, 1]\u001b[0m\u001b[37m \u001b[0m│\n", + "│\u001b[2m \u001b[0m\u001b[2m6\u001b[0m\u001b[2m \u001b[0m│ test_pearson │ PearsonCorrCoef │ 0 │\u001b[37m \u001b[0m\u001b[37m ?\u001b[0m\u001b[37m \u001b[0m│\u001b[37m \u001b[0m\u001b[37m ?\u001b[0m\u001b[37m \u001b[0m│\n", + "│\u001b[2m \u001b[0m\u001b[2m7\u001b[0m\u001b[2m \u001b[0m│ test_spearman │ SpearmanCorrCoef │ 0 │\u001b[37m \u001b[0m\u001b[37m ?\u001b[0m\u001b[37m \u001b[0m│\u001b[37m \u001b[0m\u001b[37m ?\u001b[0m\u001b[37m \u001b[0m│\n", + "└───┴────────────────────────┴────────────────────┴────────┴────────────┴────────────┘\n", + "\u001b[1mTrainable params\u001b[0m: 257 \n", + "\u001b[1mNon-trainable params\u001b[0m: 2.4 M \n", + "\u001b[1mTotal params\u001b[0m: 2.4 M \n", + "\u001b[1mTotal estimated model params size (MB)\u001b[0m: 9 \n", + "Starting sanity check...\n", + "Sanity check complete.\n", + "Starting training...\n", + "Epoch 0: Train Loss = 2.464, Val Loss = 2.207\n", + "Epoch 1: Train Loss = 2.461, Val Loss = 2.157\n", + "Epoch 2: Train Loss = 2.423, Val Loss = 2.109\n", + "Epoch 3: Train Loss = 2.390, Val Loss = 2.062\n", + "Epoch 4: Train Loss = 2.350, Val Loss = 2.018\n", + "Epoch 5: Train Loss = 2.259, Val Loss = 1.976\n", + "Epoch 6: Train Loss = 2.221, Val Loss = 1.937\n", + "Epoch 7: Train Loss = 2.132, Val Loss = 1.900\n", + "Epoch 8: Train Loss = 2.109, Val Loss = 1.867\n", + "Epoch 9: Train Loss = 2.144, Val Loss = 1.836\n", + "Epoch 10: Train Loss = 2.102, Val Loss = 1.808\n", + "Epoch 11: Train Loss = 2.013, Val Loss = 1.783\n", + "Epoch 12: Train Loss = 2.014, Val Loss = 1.760\n", + "Epoch 13: Train Loss = 1.979, Val Loss = 1.741\n", + "Epoch 14: Train Loss = 1.995, Val Loss = 1.724\n", + "Epoch 15: Train Loss = 1.945, Val Loss = 1.710\n", + "Epoch 16: Train Loss = 1.904, Val Loss = 1.699\n", + "Epoch 17: Train Loss = 1.972, Val Loss = 1.690\n", + "Epoch 18: Train Loss = 1.936, Val Loss = 1.682\n", + "Epoch 19: Train Loss = 1.931, Val Loss = 1.677\n", + "Epoch 20: Train Loss = 1.907, Val Loss = 1.673\n", + "Epoch 21: Train Loss = 1.909, Val Loss = 1.671\n", + "Epoch 22: Train Loss = 1.898, Val Loss = 1.669\n", + "Epoch 23: Train Loss = 1.904, Val Loss = 1.669\n", + "Epoch 24: Train Loss = 1.890, Val Loss = 1.668\n", + "Epoch 25: Train Loss = 1.912, Val Loss = 1.668\n", + "Epoch 26: Train Loss = 1.894, Val Loss = 1.642\n", + "Epoch 27: Train Loss = 1.807, Val Loss = 1.615\n", + "Epoch 28: Train Loss = 1.817, Val Loss = 1.588\n", + "Epoch 29: Train Loss = 1.811, Val Loss = 1.562\n", + "Epoch 30: Train Loss = 1.764, Val Loss = 1.537\n", + "Epoch 31: Train Loss = 1.762, Val Loss = 1.512\n", + "Epoch 32: Train Loss = 1.680, Val Loss = 1.489\n", + "Epoch 33: Train Loss = 1.656, Val Loss = 1.466\n", + "Epoch 34: Train Loss = 1.618, Val Loss = 1.445\n", + "Epoch 35: Train Loss = 1.621, Val Loss = 1.424\n", + "Epoch 36: Train Loss = 1.581, Val Loss = 1.405\n", + "Epoch 37: Train Loss = 1.469, Val Loss = 1.387\n", + "Epoch 38: Train Loss = 1.531, Val Loss = 1.371\n", + "Epoch 39: Train Loss = 1.478, Val Loss = 1.357\n", + "Epoch 40: Train Loss = 1.475, Val Loss = 1.345\n", + "Epoch 41: Train Loss = 1.453, Val Loss = 1.335\n", + "Epoch 42: Train Loss = 1.408, Val Loss = 1.326\n", + "Epoch 43: Train Loss = 1.467, Val Loss = 1.319\n", + "Epoch 44: Train Loss = 1.420, Val Loss = 1.314\n", + "Epoch 45: Train Loss = 1.412, Val Loss = 1.310\n", + "Epoch 46: Train Loss = 1.401, Val Loss = 1.307\n", + "Epoch 47: Train Loss = 1.443, Val Loss = 1.306\n", + "Epoch 48: Train Loss = 1.387, Val Loss = 1.305\n", + "Epoch 49: Train Loss = 1.368, Val Loss = 1.305\n", + "`Trainer.fit` stopped: `max_epochs=50` reached.\n", + "Restoring states from the checkpoint path at output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", + "Loaded model weights from checkpoint at output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", + "/usr/local/lib/python3.9/site-packages/torch/utils/data/dataloader.py:563: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.\n", + " warnings.warn(_create_warning_msg(\n", + "Starting testing...\n", + "Testing complete.\n", + "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", + "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", + "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", + "│\u001b[36m \u001b[0m\u001b[36m test_loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 1.3567686080932617 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test_pearson \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6589984893798828 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test_spearman \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6308208107948303 \u001b[0m\u001b[35m \u001b[0m│\n", + "└───────────────────────────┴───────────────────────────┘\n", + "Restoring states from the checkpoint path at output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", + "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", + "Loaded model weights from checkpoint at output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", + "Starting prediction...\n", + "Prediction complete.\n", + "saving a scatter plot for set: train (128 variants)\n", + "saving a scatter plot for set: val (32 variants)\n", + "saving a scatter plot for set: test (4655 variants)\n", + " mse pearsonr r2 spearmanr\n", + "set \n", + "train 1.456980 0.722311 -0.248835 0.686027\n", + "val 1.305009 0.704652 -0.210136 0.730822\n", + "test 1.356768 0.658999 -0.218819 0.630821\n" + ] + } + ], + "source": [ + "!python code/train_target_model.py @args/finetune_avgfp_local.txt --enable_progress_bar false --enable_simple_progress_messages --max_epochs 50 --unfreeze_backbone_at_epoch 25" + ] + }, + { + "cell_type": "markdown", + "id": "f33fc407-6ab1-45e3-8e6a-9b717dca7f00", + "metadata": { + "id": "f33fc407-6ab1-45e3-8e6a-9b717dca7f00" + }, + "source": [ + "# Additional recommendations" + ] + }, + { + "cell_type": "markdown", + "id": "39c8e0e5-8bb5-4200-ab45-e559b0f20896", + "metadata": { + "jp-MarkdownHeadingCollapsed": true, + "id": "39c8e0e5-8bb5-4200-ab45-e559b0f20896" + }, + "source": [ + "## Model selection\n", + "\n", + "Selecting the model from the epoch with the lowest validation set loss can help prevent overfitting. It requires having a big enough validation set that provides an accurate estimate of performance.\n", + "\n", + "We enabled model selection if the validation set size was ≥ 32 for METL-Local and ≥ 128 for METL-Global. We found the optimization was more stable for METL-Local than METL-Global, thus smaller validation sets were still reliable.\n", + "\n", + "Enable model selection by setting argument `--ckpt_monitor val`.\n" + ] + }, + { + "cell_type": "markdown", + "id": "b18f773b-8209-4993-b3f0-994b0ab2b133", + "metadata": { + "id": "b18f773b-8209-4993-b3f0-994b0ab2b133" + }, + "source": [ + "## Backbone cutoff for METL-Global\n", + "Finetuning METL-Global is largely the same as METL-Local, except we recommend using a different threshold for model selection (see above), as well as a different backbone cutoff.\n", + "\n", + "For METL-Local, we set `--backbone_cutoff -1`, which attaches the new prediction head immediately after the final fully connected layer.\n", + "\n", + "For METL-Global, we recommend setting `--backbone_cutoff -2`, which attaches the new prediction head immediately after the global pooling layer. We found this resulted in better finetuning performance for METL-Global." + ] + }, + { + "cell_type": "markdown", + "id": "2a591eb8-3d5e-437f-9189-3c0834f7f447", + "metadata": { + "id": "2a591eb8-3d5e-437f-9189-3c0834f7f447" + }, + "source": [ + "# Running inference using finetuned model" + ] + }, + { + "cell_type": "markdown", + "id": "af85ff8f-1a30-4ba2-bf3b-967a773e0e80", + "metadata": { + "id": "af85ff8f-1a30-4ba2-bf3b-967a773e0e80" + }, + "source": [ + "The PyTorch Lightning framework supports inference, but while we put together a working example, we recommend converting the PyTorch Lightning checkpoint to pure PyTorch and using the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) package to run inference in pure PyTorch." + ] + }, + { + "cell_type": "markdown", + "id": "1acca5d1-1bca-4c3f-b9d3-56525cf11186", + "metadata": { + "id": "1acca5d1-1bca-4c3f-b9d3-56525cf11186" + }, + "source": [ + "## Convert to PyTorch\n", + "Lightning checkpoints are compatible with pure pytorch, but they may contain additional items that are not needed for inference. This script loads the checkpoint and saves a smaller checkpoint with just the model weights and hyperparameters." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "63d8ce0a-5534-406f-90b6-6c155cb6ea9c", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "63d8ce0a-5534-406f-90b6-6c155cb6ea9c", + "outputId": "f8f83cdb-8c79-4550-c745-869ea9d03962" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Processing checkpoint: output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", + "Saving converted checkpoint to: output/training_logs/SrcZPH8V/checkpoints/SrcZPH8V.pt\n" + ] + } + ], + "source": [ + "# the Lightning checkpoint from the finetuning we performed above\n", + "fine_tuning_dir_name = os.listdir('output/training_logs')[0]\n", + "\n", + "ckpt_fn = f\"output/training_logs/{fine_tuning_dir_name}/checkpoints/epoch=49-step=50.ckpt\"\n", + "\n", + "# run the conversion script\n", + "!python code/convert_ckpt.py --ckpt_path $ckpt_fn" + ] + }, + { + "cell_type": "markdown", + "id": "98b562aa-663a-4b0d-a719-e85555cf875d", + "metadata": { + "id": "98b562aa-663a-4b0d-a719-e85555cf875d" + }, + "source": [ + "## Load checkpoint with metl-pretrained package\n", + "Using the hugging face wrapper, we can load the metl library and use it to load our newly trained model checkpoint and inference with it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ff35ce69-97ed-4a5a-b082-f197aae1addc", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 217, + "referenced_widgets": [ + "42839897b9ce4fa4a524552d2fc989d9", + "aa724e8a4a5f4854906068997610ac4f", + "442251f8a1474208ad2ed82debf07e2e", + "132972e875d24e3a82dbbcf98a04f0ab", + "b3a8c29390c54992a779d063b8efba43", + "04c46c0890714949a9d75e3f9814196f", + "7e90828d391d4169b9a92aff6b2ff21f", + "1b95ab13b8634294967b009f9547ee82", + "33659e9904434bc986f6a9c31c92438a", + "39b9f6db0cf6436bbaaa7aef3a18e8f8", + "2b447d15f2e247749c00d39d8f4373fb", + "2ff605c0f3d64de4a57f806696f07d34", + "33b7810598824a809f7a3ad43d3b82ff", + "0899ce301cce48549914a63b3814b7b9", + "b33b73b6146d4790aadbb04d6c93dca3", + "8efde142cb0f42d29d482364c0601a9d", + "edf3bc9f33e0449a807d14f19533b686", + "47126a1b03f64051a2f123efbc66847c", + "11b0a14c061047809ab1f0966ae7988a", + "bbcfb2aa215041fcabd5c50657cb137d", + "a09487f30a37419eb7f59e514f522a28", + "f0636739f1844b2394ecea3a51a67bc1", + "455decadb6e742fda1f31f7515c57358", + "3285d87b40a2481f851e7e1610e575d7", + "4dc14eb5a7874943983ab033d8caadff", + "70046589d7df489daab19c3a5dd303df", + "c329fc9ad7ea489f9f592800f00b1720", + "02d7c9d4a0e64459a2049d8c0e6c63b9", + "93e0ac15295a40fea88e4573c7ba36cc", + "36185473d9084edf8183ac220b7d2bca", + "fc29e2fc8d674cbcb44e49bb02a6133d", + "1e68504735754492b54d2c26270299c3", + "df1241447f234f1eb5f640956da48426" + ] + }, + "id": "ff35ce69-97ed-4a5a-b082-f197aae1addc", + "outputId": "ffff474d-38af-47b2-8a1a-3d4b09a77f2d" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "config.json: 0%| | 0.00/282 [00:00] 76.92K --.-KB/s in 0.02s \n", + "\n", + "2024-08-16 22:23:13 (4.79 MB/s) - ‘2qmt_p.pdb’ saved [78764/78764]\n", + "\n" + ] + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mpjvGjzArLF1", + "cellView": "form" + }, + "outputs": [], + "source": [ + "# @title Importing required libraries\n", + "from transformers import AutoModel, AutoConfig, logging\n", + "import ipywidgets as widgets\n", + "from IPython.display import clear_output, HTML, display\n", + "import pandas as pd\n", + "import torch\n", + "from huggingface_hub import login\n", + "import io\n", + "import json\n", + "import biopandas\n", + "\n", + "logging.set_verbosity_error()\n", + "\n", + "# Declaring this here so that it's available regardless if later cells are run or not\n", + "variant_file = None\n", + "pdb_file_path = '2qmt_p.pdb'" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "sfBGUCJorLF5" + }, + "source": [ + "Next we will define a necessary helper function for later on in the file." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "bY_fMXgMrLF6", + "cellView": "form" + }, + "outputs": [], + "source": [ + "# @title To zero based helper functoin\n", + "def to_zero_based(variants):\n", + " zero_based = []\n", + " for line in variants:\n", + " line_as_json = json.loads(line)\n", + " new_variants = []\n", + " for variant in line_as_json:\n", + " new_variant = []\n", + " mutations = variant.split(',')\n", + " for mutation in mutations:\n", + " residue_zero_based = int(mutation[1:-1]) - 1\n", + " new_variant.append(f\"{mutation[0]}{residue_zero_based}{mutation[-1]}\")\n", + " new_variants.append(\",\".join(new_variant))\n", + " zero_based.append(new_variants)\n", + "\n", + " return zero_based" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JWJCsBukrLF7" + }, + "source": [ + "We will then load a METL model through the 🤗 API. trust_remote_code=True is required to use METL models through 🤗." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vIp69-KLrLF8", + "cellView": "form", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 182, + "referenced_widgets": [ + "d438d18254c247aea4e1762205a4847f", + "a04aee5de6734d78bf97f29057882c2c", + "d8d8c5c034f04f38911318e67b00b279", + "3d812121bbaa4ad3af2754d11118dfdf", + "d19f4dde776140e8b6d487f8ba356cc8", + "13d2242e978f4e95a9a41d49bab7d278", + "e0f23caf9cfb4e8e8650ac0207f1a35d", + "2f49051f0cda4ac38d93d60c84c6cc0f", + "d0126606e582428c86a0868a781a5822", + "aaabbf4c748645339c1d11ebf0136d66", + "349381bae0924ce2b5d0306efb3778d0", + "763aa71022c64ef8a28ce64240271949", + "a68ae0355b48417c9415a0370f02b5c5", + "79dc84d811784d7f83aa9abde6f48e7c", + "be5ffdd32ce74735b6819dc2c8eeaa8f", + "32deec8f5b414cc6ad6869f3e68b4c88", + "700d0fcd76684b6d8683859efc97b532", + "bad4c385fa8a4efd8088400f580f7618", + "5d95cdd43486472ba9e4a4fe91fdb99c", + "466ae32bf3b648fc9237f2df7ef73e30", + "c4795fdf2ec645ab8d6f44ba4f3d2fed", + "d1cdc781de354248adbe248d5fbb9cc6", + "5c9f38f207894e8fbe6eb1466f722b06", + "2780bab4b72d4d02a2453f4c09f473ed", + "2412e2bee90a4d78abcfc0d5c5395e1d", + "2ba5948c078444fe83c37b02731c5d93", + "e2f93ffdf05d4bc6a1ad3311cf583d32", + "e6fa3fe9edd64ea19822a7b664e2aa70", + "0f29f48044214fa1972fb05859ad0c30", + "49f8cca765184dcab283a6ae3b276d48", + "20c77d05af294ce5971a1980d73adc56", + "ce185df9b8a8450b8e22ad21521e3eda", + "6cfb7e2fe12e4e2797bd787b98822f09" + ] + }, + "outputId": "66f86219-562b-4e16-b7bb-f953b30a4bcf" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n", + "Token is valid (permission: write).\n", + "Your token has been saved to /root/.cache/huggingface/token\n", + "Login successful\n" + ] + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "config.json: 0%| | 0.00/282 [00:00" + ], + "text/html": [ + "\n", + "\n" + ] + }, + "metadata": {} + }, + { + "output_type": "display_data", + "data": { + "text/plain": [ + "Textarea(value='', description='Variant String:', layout=Layout(height='100px', width='500px'), placeholder='[…" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "44c550288df5419aaca625377a46f076" + } + }, + "metadata": {} + } + ], + "source": [ + "# @title Variant text input\n", + "variants_string = \"\"\"[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n", + "[\"T13P,T33F\"]\"\"\"\n", + "style = {'description_width':'initial'}\n", + "\n", + "variant_text = widgets.Textarea(\n", + " value='',\n", + " placeholder=variants_string,\n", + " description='Variant String:',\n", + " disabled=False,\n", + " style = style,\n", + " layout=widgets.Layout(height='100px', width='500px'),\n", + ")\n", + "\n", + "variant_text.add_class('variant_text_area')\n", + "\n", + "style = \"\"\"\n", + "\n", + "\"\"\"\n", + "\n", + "display(HTML(style))\n", + "display(variant_text)" + ] + }, + { + "cell_type": "markdown", + "source": [ + "If you would rather upload a file, run the cell below and use it to upload a file. If a file is upload, the input above will not be looked at for variants\n" + ], + "metadata": { + "id": "ggs9zSgPHOYj" + } + }, + { + "cell_type": "code", + "source": [ + "# @title Variant file upload\n", + "# @markdown If you want to upload a variant JSON file, run this cell and upload the file with the provided button that appears below.\n", + "\n", + "\n", + "def update_variant_file(button_input):\n", + " global variant_file\n", + " for name, data in button_input['new'].items():\n", + " clear_output()\n", + " display(variant_upload)\n", + " print(f'Loaded file: {name}')\n", + " variant_file = data['content'].decode('utf-8').splitlines()\n", + "\n", + "variant_upload = widgets.FileUpload(\n", + " accept='.json, .txt',\n", + " multiple=False\n", + ")\n", + "\n", + "variant_upload.observe(update_variant_file, names='value')\n", + "variant_upload" + ], + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 49, + "referenced_widgets": [ + "c8e0b77d472e4780b957978018c1db2f", + "c33d2ae86f334b19bc2a4d61bf0aef7d", + "6f5c6fd2871f4f79999581a50494f725" + ] + }, + "cellView": "form", + "id": "8TLYi6orHN_8", + "outputId": "b5e03fc2-5408-481b-f365-bd121d984ea4" + }, + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "FileUpload(value={}, accept='.json, .txt', description='Upload')" + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "c8e0b77d472e4780b957978018c1db2f" + } + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "mASfltPUrLGI", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "cellView": "form", + "outputId": "c2135a87-a580-4272-f572-fb04a8f276a0" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Using variant placeholder\n" + ] + } + ], + "source": [ + "# @title Variant Selecting Logic (just run)\n", + "\n", + "clear_output()\n", + "if len(variant_text.value) > 0:\n", + " print(\"Using text area input\")\n", + " variants = variant_text.value\n", + "elif variant_file:\n", + " print(\"Using variants file\")\n", + " variants = variant_file\n", + "else:\n", + " print(\"Using variant placeholder\")\n", + " variants = variant_text.placeholder.splitlines()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YOfEUeNYrLGI" + }, + "source": [ + "For biologists, one-based indexing is commonly used. However, METL models were designed to used zero-based indexing. If one based indexing is needed, select it in the dropdown below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "ecLAU9IOrLGK", + "cellView": "form" + }, + "outputs": [], + "source": [ + "# @title Transform input from 1 based indexing to zero based indexing\n", + "# @markdown Select indexing for residue mutations\n", + "indexing = \"0\" # @param ['0', '1']" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ixhZbYm8rLGM" + }, + "source": [ + "Since both file and string variants give the same result, we only need to use one moving forwards. We will use the string_variants variable.\n", + "\n", + "To predict with METL, we will need to use the loaded model and encoder with our variables we defined above. We will wrap this in a for loop to predict on all of our variants as we have multiple lines of them." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "th1JyojWrLGN", + "cellView": "form" + }, + "outputs": [], + "source": [ + "# @title METL Predicting loop\n", + "output = []\n", + "\n", + "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", + "\n", + "metl = metl.to(device)\n", + "\n", + "if indexing == \"1\":\n", + " predict_variants = to_zero_based(variants)\n", + "else:\n", + " predict_variants = variants\n", + "\n", + "for variant in predict_variants:\n", + " # First in METL we need to encode our variants\n", + " if not isinstance(variant, list):\n", + " variant = json.loads(variant)\n", + " encoded_variants = metl.encoder.encode_variants(wildtype, variant)\n", + "\n", + " #Next, we predict\n", + " with torch.no_grad():\n", + " if pdb_file_path:\n", + " predictions = metl(torch.tensor(encoded_variants).to(device), pdb_fn=pdb_file_path)\n", + " else:\n", + " predictions = metl(torch.tensor(encoded_variants).to(device))\n", + "\n", + " output.append({\n", + " \"wt\": wildtype,\n", + " \"variants\": variant,\n", + " \"logits\": predictions.tolist()\n", + " })" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pO8jdBssrLGO" + }, + "source": [ + "Finally, we will save our output. We will save our output as a list of JSON Objects." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "nYz6NRB_rLGP", + "cellView": "form" + }, + "outputs": [], + "source": [ + "# @title Saving the predictions\n", + "with open('./output.json', 'w') as f:\n", + " f.write(json.dumps(output, indent=2))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + }, + "colab": { + "provenance": [], + "gpuType": "T4" + }, + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "d438d18254c247aea4e1762205a4847f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a04aee5de6734d78bf97f29057882c2c", + "IPY_MODEL_d8d8c5c034f04f38911318e67b00b279", + "IPY_MODEL_3d812121bbaa4ad3af2754d11118dfdf" + ], + "layout": "IPY_MODEL_d19f4dde776140e8b6d487f8ba356cc8" + } + }, + "a04aee5de6734d78bf97f29057882c2c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_13d2242e978f4e95a9a41d49bab7d278", + "placeholder": "​", + "style": "IPY_MODEL_e0f23caf9cfb4e8e8650ac0207f1a35d", + "value": "config.json: 100%" + } + }, + "d8d8c5c034f04f38911318e67b00b279": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_2f49051f0cda4ac38d93d60c84c6cc0f", + "max": 282, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_d0126606e582428c86a0868a781a5822", + "value": 282 + } + }, + "3d812121bbaa4ad3af2754d11118dfdf": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aaabbf4c748645339c1d11ebf0136d66", + "placeholder": "​", + "style": "IPY_MODEL_349381bae0924ce2b5d0306efb3778d0", + "value": " 282/282 [00:00<00:00, 6.71kB/s]" + } + }, + "d19f4dde776140e8b6d487f8ba356cc8": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "13d2242e978f4e95a9a41d49bab7d278": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e0f23caf9cfb4e8e8650ac0207f1a35d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "2f49051f0cda4ac38d93d60c84c6cc0f": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d0126606e582428c86a0868a781a5822": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "aaabbf4c748645339c1d11ebf0136d66": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "349381bae0924ce2b5d0306efb3778d0": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "763aa71022c64ef8a28ce64240271949": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a68ae0355b48417c9415a0370f02b5c5", + "IPY_MODEL_79dc84d811784d7f83aa9abde6f48e7c", + "IPY_MODEL_be5ffdd32ce74735b6819dc2c8eeaa8f" + ], + "layout": "IPY_MODEL_32deec8f5b414cc6ad6869f3e68b4c88" + } + }, + "a68ae0355b48417c9415a0370f02b5c5": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_700d0fcd76684b6d8683859efc97b532", + "placeholder": "​", + "style": "IPY_MODEL_bad4c385fa8a4efd8088400f580f7618", + "value": "huggingface_wrapper.py: 100%" + } + }, + "79dc84d811784d7f83aa9abde6f48e7c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5d95cdd43486472ba9e4a4fe91fdb99c", + "max": 99960, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_466ae32bf3b648fc9237f2df7ef73e30", + "value": 99960 + } + }, + "be5ffdd32ce74735b6819dc2c8eeaa8f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_c4795fdf2ec645ab8d6f44ba4f3d2fed", + "placeholder": "​", + "style": "IPY_MODEL_d1cdc781de354248adbe248d5fbb9cc6", + "value": " 100k/100k [00:00<00:00, 1.39MB/s]" + } + }, + "32deec8f5b414cc6ad6869f3e68b4c88": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "700d0fcd76684b6d8683859efc97b532": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "bad4c385fa8a4efd8088400f580f7618": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5d95cdd43486472ba9e4a4fe91fdb99c": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "466ae32bf3b648fc9237f2df7ef73e30": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "c4795fdf2ec645ab8d6f44ba4f3d2fed": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "d1cdc781de354248adbe248d5fbb9cc6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5c9f38f207894e8fbe6eb1466f722b06": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_2780bab4b72d4d02a2453f4c09f473ed", + "IPY_MODEL_2412e2bee90a4d78abcfc0d5c5395e1d", + "IPY_MODEL_2ba5948c078444fe83c37b02731c5d93" + ], + "layout": "IPY_MODEL_e2f93ffdf05d4bc6a1ad3311cf583d32" + } + }, + "2780bab4b72d4d02a2453f4c09f473ed": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_e6fa3fe9edd64ea19822a7b664e2aa70", + "placeholder": "​", + "style": "IPY_MODEL_0f29f48044214fa1972fb05859ad0c30", + "value": "model.safetensors: 100%" + } + }, + "2412e2bee90a4d78abcfc0d5c5395e1d": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_49f8cca765184dcab283a6ae3b276d48", + "max": 176, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_20c77d05af294ce5971a1980d73adc56", + "value": 176 + } + }, + "2ba5948c078444fe83c37b02731c5d93": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_ce185df9b8a8450b8e22ad21521e3eda", + "placeholder": "​", + "style": "IPY_MODEL_6cfb7e2fe12e4e2797bd787b98822f09", + "value": " 176/176 [00:00<00:00, 8.47kB/s]" + } + }, + "e2f93ffdf05d4bc6a1ad3311cf583d32": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "e6fa3fe9edd64ea19822a7b664e2aa70": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "0f29f48044214fa1972fb05859ad0c30": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "49f8cca765184dcab283a6ae3b276d48": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "20c77d05af294ce5971a1980d73adc56": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ce185df9b8a8450b8e22ad21521e3eda": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6cfb7e2fe12e4e2797bd787b98822f09": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "cbda63c2d2de449baff69851ca9342f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FileUploadModel", + "model_module_version": "1.5.0", + "state": { + "_counter": 0, + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FileUploadModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "FileUploadView", + "accept": ".pdb", + "button_style": "", + "data": [], + "description": "Upload", + "description_tooltip": null, + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_284ae90b84c040bdb227127b3428b471", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_3cc0f506cc8540e3a1024d3dc12d8dae" + } + }, + "284ae90b84c040bdb227127b3428b471": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "3cc0f506cc8540e3a1024d3dc12d8dae": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "44c550288df5419aaca625377a46f076": { + "model_module": "@jupyter-widgets/controls", + "model_name": "TextareaModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [ + "variant_text_area" + ], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "TextareaModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "TextareaView", + "continuous_update": true, + "description": "Variant String:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_19fcb40afff24a139a91964f3c74e26a", + "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", + "rows": null, + "style": "IPY_MODEL_68ac59224bcd48fa8b02928f240e4df4", + "value": "" + } + }, + "19fcb40afff24a139a91964f3c74e26a": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": "100px", + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "500px" + } + }, + "68ac59224bcd48fa8b02928f240e4df4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "initial" + } + }, + "c8e0b77d472e4780b957978018c1db2f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FileUploadModel", + "model_module_version": "1.5.0", + "state": { + "_counter": 0, + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FileUploadModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "FileUploadView", + "accept": ".json, .txt", + "button_style": "", + "data": [], + "description": "Upload", + "description_tooltip": null, + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_c33d2ae86f334b19bc2a4d61bf0aef7d", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_6f5c6fd2871f4f79999581a50494f725" + } + }, + "c33d2ae86f334b19bc2a4d61bf0aef7d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6f5c6fd2871f4f79999581a50494f725": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + } + } + }, + "accelerator": "GPU" + }, + "nbformat": 4, + "nbformat_minor": 0 +} \ No newline at end of file From 9a844eb84acc835a57e32da2e14294cb2340c9ec Mon Sep 17 00:00:00 2001 From: John Peters Date: Mon, 19 Aug 2024 16:46:00 -0500 Subject: [PATCH 02/10] "Edited notebooks to reflect feedback" --- notebooks/colab_finetuning.ipynb | 754 +++++++++++++------------- notebooks/colab_metl_predicting.ipynb | 735 +++++++++++++++++-------- 2 files changed, 889 insertions(+), 600 deletions(-) diff --git a/notebooks/colab_finetuning.ipynb b/notebooks/colab_finetuning.ipynb index 6e43cd3..f504445 100644 --- a/notebooks/colab_finetuning.ipynb +++ b/notebooks/colab_finetuning.ipynb @@ -13,25 +13,20 @@ }, { "cell_type": "code", - "source": [ - "# @title Cloning metl\n", - "!git clone https://github.com/gitter-lab/metl.git\n", - "%cd metl" - ], + "execution_count": null, + "id": "vZx7K4mpi4w1", "metadata": { + "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "vZx7K4mpi4w1", - "outputId": "a5c16482-b458-4867-aa34-6e0274126d4f", - "cellView": "form" + "outputId": "a5c16482-b458-4867-aa34-6e0274126d4f" }, - "id": "vZx7K4mpi4w1", - "execution_count": null, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Cloning into 'metl'...\n", "remote: Enumerating objects: 370, done.\u001b[K\n", @@ -43,31 +38,29 @@ "/content/metl\n" ] } + ], + "source": [ + "# @title Cloning metl\n", + "!git clone https://github.com/gitter-lab/metl.git\n", + "%cd metl" ] }, { "cell_type": "code", - "source": [ - "# @title Setting up conda to download notebook dependencies (this takes a while)\n", - "!wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ./miniconda.sh\n", - "!chmod +x miniconda.sh\n", - "!bash ./miniconda.sh -b -u -p /usr/local\n", - "!conda env update -q -n base -f ./environment.yml" - ], + "execution_count": null, + "id": "vl7ugAoEjNFQ", "metadata": { + "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "vl7ugAoEjNFQ", - "outputId": "894a7c19-e680-4ab2-a4e1-88f55507949d", - "cellView": "form" + "outputId": "894a7c19-e680-4ab2-a4e1-88f55507949d" }, - "id": "vl7ugAoEjNFQ", - "execution_count": null, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "--2024-08-16 16:51:45-- https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", "Resolving repo.anaconda.com (repo.anaconda.com)... 104.16.32.241, 104.16.191.158, 2606:4700::6810:bf9e, ...\n", @@ -109,6 +102,15 @@ "Installing pip dependencies: ...working... done\n" ] } + ], + "source": [ + "# @title Setting up conda to download notebook dependencies (this takes a while)\n", + "# @markdown This step may take 10-20 minutes.\n", + "\n", + "!wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ./miniconda.sh\n", + "!chmod +x miniconda.sh\n", + "!bash ./miniconda.sh -b -u -p /usr/local\n", + "!conda env update -q -n base -f ./environment.yml" ] }, { @@ -120,10 +122,10 @@ "end_time": "2024-02-16T22:51:36.573559Z", "start_time": "2024-02-16T22:51:36.569490Z" }, + "id": "432eebaf-00b8-42bf-b927-fd651e6ab94d", "jupyter": { "outputs_hidden": false - }, - "id": "432eebaf-00b8-42bf-b927-fd651e6ab94d" + } }, "outputs": [], "source": [ @@ -173,9 +175,9 @@ "source": [ "# Acquire an experimental dataset\n", "\n", - "For demonstration purposes, this repository contains the [avGFP dataset](../data/dms_data/avgfp) from [Sarkisyan et al. (2016)](https://doi.org/10.1038/nature17995).\n", + "For demonstration purposes, this repository contains the [avGFP dataset](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp) from [Sarkisyan et al. (2016)](https://doi.org/10.1038/nature17995).\n", "See the [metl-pub](https://github.com/gitter-lab/metl-pub) repository to access the other experimental datasets we used in our preprint.\n", - "See the README in the [dms_data](../data/dms_data) directory for information about how to use your own experimental dataset." + "See the README in the [dms_data](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/data/dms_data) directory for information about how to use your own experimental dataset." ] }, { @@ -188,10 +190,10 @@ "# Acquire a pretrained model\n", "Pretrained METL models are available in the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository. You can use one of those, or you can pretrain your own METL model (see [pretraining.ipynb](pretraining.ipynb)).\n", "\n", - "For demonstration purposes, we include a pretrained avGFP METL-Local model from the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository in the [pretrained_models](../pretrained_models) directory. This model is `METL-L-2M-3D-GFP` (UUID: `Hr4GNHws`).\n", + "For demonstration purposes, we include a pretrained avGFP METL-Local model from the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository in the [pretrained_models](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/pretrained_models) directory. This model is `METL-L-2M-3D-GFP` (UUID: `Hr4GNHws`).\n", "It is the avGFP METL-Local source model we used for the analysis in our preprint.\n", "\n", - "We will show how to finetune this model using the [experimental avGFP dataset](../data/dms_data/avgfp)." + "We will show how to finetune this model using the [experimental avGFP dataset](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/data/dms_data/avgfp)." ] }, { @@ -203,7 +205,7 @@ "source": [ "# Training arguments\n", "\n", - "The script for finetuning on experimental data is [train_target_model.py](train_target_model.py). This script has a number of arguments you can view by uncommenting and running the below cell. There are additional arguments related to architecture that won't show up if you run the command, but you can view them in [models.py](../code/models.py) in the `TransferModel` class." + "The script for finetuning on experimental data is [train_target_model.py](train_target_model.py). This script has a number of arguments you can view by uncommenting and running the below cell. There are additional arguments related to architecture that won't show up if you run the command, but you can view them in [models.py](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/code/models.py) in the `TransferModel` class." ] }, { @@ -225,7 +227,7 @@ "id": "7ec8c31b-2da2-4ba7-9f4e-39e30dce8056" }, "source": [ - "We set up finetuning arguments for this example in [finetune_avgfp_local.txt](../args/pretrain_avgfp_local.txt) in the [args](../args) directory. This argument file can be used directly with [train_target_model.py](train_target_model.py) by calling the command `!python code/train_target_model.py @args/finetune_avgfp_local.txt` (we do this in the next section).\n", + "We set up finetuning arguments for this example in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args/pretrain_avgfp_local.txt) in the [args](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args) directory. This argument file can be used directly with [train_target_model.py](train_target_model.py) by calling the command `!python code/train_target_model.py @args/finetune_avgfp_local.txt` (we do this in the next section).\n", "\n", "Uncomment and run the cell below to view the contents of the argument file. The sections below will walk through and explain the key arguments." ] @@ -262,7 +264,7 @@ }, "source": [ "\n", - "Specify the dataset name and the train/val/test split. The dataset must be defined in [datasets.yml](../data/dms_data/datasets.yml). For demonstration purposes, we are using one of the reduced dataset size splits with a dataset size of 160 (train size of 128).\n", + "Specify the dataset name and the train/val/test split. The dataset must be defined in [datasets.yml](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/data/dms_data/datasets.yml). For demonstration purposes, we are using one of the reduced dataset size splits with a dataset size of 160 (train size of 128).\n", "```\n", "--ds_name\n", "avgfp\n", @@ -288,7 +290,7 @@ "score\n", "```\n", "\n", - "The METL-Local model we are finetuning uses 3D structure-based relative position embeddings, so we need to specify the PDB filename. This PDB file is in the [data/pdb_files](../data/pdb_files) directory, which the script checks by default, so there is no need to specify the full path. You can also just specify \"auto\" to use the PDB file defined for this dataset in [datasets.yml](../data/dms_data/datasets.yml).\n", + "The METL-Local model we are finetuning uses 3D structure-based relative position embeddings, so we need to specify the PDB filename. This PDB file is in the [data/pdb_files](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/data/pdb_files) directory, which the script checks by default, so there is no need to specify the full path. You can also just specify \"auto\" to use the PDB file defined for this dataset in [datasets.yml](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/data/dms_data/datasets.yml).\n", "\n", "```\n", "--pdb_fn\n", @@ -475,11 +477,11 @@ "id": "8d3d8d23-9d54-4888-842d-4fc8fd843b40" }, "source": [ - "All the arguments described above are contained in [finetune_avgfp_local.txt](../args/pretrain_avgfp_local.txt), which can be fed directly into [train_target_model.py](train_target_model.py).\n", + "All the arguments described above are contained in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args/pretrain_avgfp_local.txt), which can be fed directly into [train_target_model.py](train_target_model.py).\n", "\n", "PyTorch Lightning has a built-in progress bar that is convenient for seeing training progress, but it does not display correctly in Jupyter when calling the script with `!python`. We are going to disable the progress bar for by setting the flag `--enable_progress_bar false`. Instead, we implemented a simple print statement to track training progress, which we will enable with the flag `--enable_simple_progress_messages`.\n", "\n", - "The [train_target_model.py](../code/train_target_model.py) script can support running on Apple Silicon with acceleration via MPS, but the version of PyTorch used in this environment is slightly outdated and does not support all MPS operations, so MPS support has been disabled. The script will run on GPU via CUDA if available, otherwise it will use CPUs.\n", + "The [train_target_model.py](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/code/train_target_model.py) script can support running on Apple Silicon with acceleration via MPS, but the version of PyTorch used in this environment is slightly outdated and does not support all MPS operations, so MPS support has been disabled. The script will run on GPU via CUDA if available, otherwise it will use CPUs.\n", "\n", "To speed up training for demo purposes, we also override `--max_epochs 50` and `--unfreeze_backbone_at_epoch 25`." ] @@ -497,8 +499,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Random seed not specified, using: 806881872\n", "Global seed set to 806881872\n", @@ -641,8 +643,8 @@ "cell_type": "markdown", "id": "39c8e0e5-8bb5-4200-ab45-e559b0f20896", "metadata": { - "jp-MarkdownHeadingCollapsed": true, - "id": "39c8e0e5-8bb5-4200-ab45-e559b0f20896" + "id": "39c8e0e5-8bb5-4200-ab45-e559b0f20896", + "jp-MarkdownHeadingCollapsed": true }, "source": [ "## Model selection\n", @@ -713,8 +715,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Processing checkpoint: output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", "Saving converted checkpoint to: output/training_logs/SrcZPH8V/checkpoints/SrcZPH8V.pt\n" @@ -791,36 +793,36 @@ }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "config.json: 0%| | 0.00/282 [00:00] 76.92K --.-KB/s in 0.02s \n", + "\r2qmt_p.pdb 0%[ ] 0 --.-KB/s \r2qmt_p.pdb 100%[===================>] 76.92K --.-KB/s in 0.01s \n", "\n", - "2024-08-16 22:23:13 (4.79 MB/s) - ‘2qmt_p.pdb’ saved [78764/78764]\n", + "2024-08-19 21:44:05 (5.27 MB/s) - ‘2qmt_p.pdb’ saved [78764/78764]\n", "\n" ] } + ], + "source": [ + "# @title download the example pdb file\n", + "!wget -O 2qmt_p.pdb https://raw.githubusercontent.com/gitter-lab/metl-pretrained/main/pdbs/2qmt_p.pdb" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": { - "id": "mpjvGjzArLF1", - "cellView": "form" + "cellView": "form", + "id": "mpjvGjzArLF1" }, "outputs": [], "source": [ @@ -110,10 +110,10 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { - "id": "bY_fMXgMrLF6", - "cellView": "form" + "cellView": "form", + "id": "bY_fMXgMrLF6" }, "outputs": [], "source": [ @@ -146,50 +146,50 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": { - "id": "vIp69-KLrLF8", "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", - "height": 182, + "height": 202, "referenced_widgets": [ - "d438d18254c247aea4e1762205a4847f", - "a04aee5de6734d78bf97f29057882c2c", - "d8d8c5c034f04f38911318e67b00b279", - "3d812121bbaa4ad3af2754d11118dfdf", - "d19f4dde776140e8b6d487f8ba356cc8", - "13d2242e978f4e95a9a41d49bab7d278", - "e0f23caf9cfb4e8e8650ac0207f1a35d", - "2f49051f0cda4ac38d93d60c84c6cc0f", - "d0126606e582428c86a0868a781a5822", - "aaabbf4c748645339c1d11ebf0136d66", - "349381bae0924ce2b5d0306efb3778d0", - "763aa71022c64ef8a28ce64240271949", - "a68ae0355b48417c9415a0370f02b5c5", - "79dc84d811784d7f83aa9abde6f48e7c", - "be5ffdd32ce74735b6819dc2c8eeaa8f", - "32deec8f5b414cc6ad6869f3e68b4c88", - "700d0fcd76684b6d8683859efc97b532", - "bad4c385fa8a4efd8088400f580f7618", - "5d95cdd43486472ba9e4a4fe91fdb99c", - "466ae32bf3b648fc9237f2df7ef73e30", - "c4795fdf2ec645ab8d6f44ba4f3d2fed", - "d1cdc781de354248adbe248d5fbb9cc6", - "5c9f38f207894e8fbe6eb1466f722b06", - "2780bab4b72d4d02a2453f4c09f473ed", - "2412e2bee90a4d78abcfc0d5c5395e1d", - "2ba5948c078444fe83c37b02731c5d93", - "e2f93ffdf05d4bc6a1ad3311cf583d32", - "e6fa3fe9edd64ea19822a7b664e2aa70", - "0f29f48044214fa1972fb05859ad0c30", - "49f8cca765184dcab283a6ae3b276d48", - "20c77d05af294ce5971a1980d73adc56", - "ce185df9b8a8450b8e22ad21521e3eda", - "6cfb7e2fe12e4e2797bd787b98822f09" + "9675fa6ffbc24956b73f5678f1b1378e", + "ce1b1efe8def42468305dc4aa9db46b7", + "738f5ce4d5624866853a083c64061c17", + "16b23742cc57451685c6d879074fa927", + "d309692dd41d4ed39761a997e384ab9b", + "a9983b7631014b1fa0f894e26dfa6baf", + "7ee1cbd016db43fdaceaaa9461dc8c10", + "de2b5bbb9de448f697c3ab63f657c269", + "dfa18e57365a43ee82560b0914e71ec4", + "8ed04e43e31741ad90b17f4d4a99fabd", + "d530a1e92cab4d41bc9db878d456f950", + "df8289201f734f90ab0d23b39bce8ae2", + "d8cda8df783d41ca951fb0e983bfae23", + "4abd40e6c94648658e1187064b778a7c", + "56e0917ad5ca44db84fb15e1d44db0da", + "e206c3c532824633809e3cffd58b9a1c", + "7077f04cbcfb4dd5a44dc14d37381eaa", + "53afbb49039148a8a94e3f108fc6b52a", + "fb6cd2c0c96b4d51917eb458cf8acc97", + "84e0849ad71b4c6b95daf28317d8fbb8", + "0896776aeeaa4917b51cf946fea7663a", + "d2ef61286bc44c8eb48277bc29730524", + "bfe3b4b533f84e48a2b820cbfce9dcf2", + "7ad2ca1b07674e4292b04f441660be0e", + "b0e5e2207ce54861b47d7b593f1eb884", + "f91362bcfd624785a438371699a724b3", + "c05a432373d74c87ae7348e89e11c162", + "db6cde19ca394758abfbc4b9267fbe03", + "871af3cc19e1489e85834c0c20ea281d", + "9c81c4f4b09f49e3aff7c81d34dc6fa2", + "c239c3db91514be3aa4c84568f44d12d", + "28e61c03f160467e8de45ce752620e13", + "e908a67f37334277a65ab3b3b4f861da" ] }, - "outputId": "66f86219-562b-4e16-b7bb-f953b30a4bcf" + "id": "vIp69-KLrLF8", + "outputId": "2baded08-7aac-4cd7-bdfc-30333473a53f" }, "outputs": [ { @@ -211,7 +211,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "d438d18254c247aea4e1762205a4847f" + "model_id": "9675fa6ffbc24956b73f5678f1b1378e" } }, "metadata": {} @@ -225,7 +225,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "763aa71022c64ef8a28ce64240271949" + "model_id": "df8289201f734f90ab0d23b39bce8ae2" } }, "metadata": {} @@ -239,7 +239,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "5c9f38f207894e8fbe6eb1466f722b06" + "model_id": "bfe3b4b533f84e48a2b820cbfce9dcf2" } }, "metadata": {} @@ -267,14 +267,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { + "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "Odg6Mps7rLGA", - "outputId": "9e4583a2-cfb1-4964-d39c-eeb9671f926f", - "cellView": "form" + "outputId": "94754026-500e-47cc-cc25-0c0ac8091c21" }, "outputs": [ { @@ -282,7 +282,7 @@ "name": "stderr", "text": [ "Downloading: \"https://zenodo.org/records/11051645/files/METL-L-2M-3D-GB1-epegcFiH.pt?download=1\" to /root/.cache/torch/hub/checkpoints/epegcFiH.pt\n", - "100%|██████████| 9.40M/9.40M [00:01<00:00, 7.44MB/s]\n" + "100%|██████████| 9.40M/9.40M [00:01<00:00, 6.84MB/s]\n" ] }, { @@ -317,10 +317,10 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": { - "id": "HBAocw_urLGE", - "cellView": "form" + "cellView": "form", + "id": "HBAocw_urLGE" }, "outputs": [], "source": [ @@ -340,20 +340,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { - "id": "nVj7UumyrLGF", + "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 49, "referenced_widgets": [ - "cbda63c2d2de449baff69851ca9342f4", - "284ae90b84c040bdb227127b3428b471", - "3cc0f506cc8540e3a1024d3dc12d8dae" + "bda2b5a3958341afac697a9453d490ea", + "b4771f2133ea478f883c72515a956e86", + "55d27c64b1dd44b8867abc6afad050b6" ] }, - "cellView": "form", - "outputId": "3dc96e24-4aca-499b-b3fc-d386c92f8bc5" + "id": "nVj7UumyrLGF", + "outputId": "90ba1b80-748d-490e-db23-345752e0d8ac" }, "outputs": [ { @@ -365,7 +365,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "cbda63c2d2de449baff69851ca9342f4" + "model_id": "bda2b5a3958341afac697a9453d490ea" } }, "metadata": {} @@ -408,20 +408,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": { - "id": "EjleQbnprLGH", + "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 121, "referenced_widgets": [ - "44c550288df5419aaca625377a46f076", - "19fcb40afff24a139a91964f3c74e26a", - "68ac59224bcd48fa8b02928f240e4df4" + "4514938ed3f84b38af2d31106559e99e", + "038f471ab24244d4ab4ec1a8b523882a", + "10fb8e7ac03a4b0a9a13774ccba7eea4" ] }, - "outputId": "ec902976-d35a-404e-85ef-946190a35f95", - "cellView": "form" + "id": "EjleQbnprLGH", + "outputId": "a0446e35-b4c7-42c5-ee49-5fb4a836ab32" }, "outputs": [ { @@ -455,7 +455,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "44c550288df5419aaca625377a46f076" + "model_id": "4514938ed3f84b38af2d31106559e99e" } }, "metadata": {} @@ -497,51 +497,30 @@ }, { "cell_type": "markdown", - "source": [ - "If you would rather upload a file, run the cell below and use it to upload a file. If a file is upload, the input above will not be looked at for variants\n" - ], "metadata": { "id": "ggs9zSgPHOYj" - } + }, + "source": [ + "If you would rather upload a file, run the cell below and use it to upload a file. If a file is uploaded, the input above will not be looked at for variants\n" + ] }, { "cell_type": "code", - "source": [ - "# @title Variant file upload\n", - "# @markdown If you want to upload a variant JSON file, run this cell and upload the file with the provided button that appears below.\n", - "\n", - "\n", - "def update_variant_file(button_input):\n", - " global variant_file\n", - " for name, data in button_input['new'].items():\n", - " clear_output()\n", - " display(variant_upload)\n", - " print(f'Loaded file: {name}')\n", - " variant_file = data['content'].decode('utf-8').splitlines()\n", - "\n", - "variant_upload = widgets.FileUpload(\n", - " accept='.json, .txt',\n", - " multiple=False\n", - ")\n", - "\n", - "variant_upload.observe(update_variant_file, names='value')\n", - "variant_upload" - ], + "execution_count": 10, "metadata": { + "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 49, "referenced_widgets": [ - "c8e0b77d472e4780b957978018c1db2f", - "c33d2ae86f334b19bc2a4d61bf0aef7d", - "6f5c6fd2871f4f79999581a50494f725" + "1e2171b76da74feb84ce1b1e4341c15b", + "d1a941b70bb541a88eb4cabe38477bdc", + "04c99f8d2faf49928fb1e7cbd88e5f8a" ] }, - "cellView": "form", "id": "8TLYi6orHN_8", - "outputId": "b5e03fc2-5408-481b-f365-bd121d984ea4" + "outputId": "64901ee5-a8b0-4766-bf44-2273cb056bb8" }, - "execution_count": null, "outputs": [ { "output_type": "display_data", @@ -552,23 +531,44 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "c8e0b77d472e4780b957978018c1db2f" + "model_id": "1e2171b76da74feb84ce1b1e4341c15b" } }, "metadata": {} } + ], + "source": [ + "# @title Variant file upload\n", + "# @markdown If you want to upload a variant JSON file, run this cell and upload the file with the provided button that appears below.\n", + "\n", + "\n", + "def update_variant_file(button_input):\n", + " global variant_file\n", + " for name, data in button_input['new'].items():\n", + " clear_output()\n", + " display(variant_upload)\n", + " print(f'Loaded file: {name}')\n", + " variant_file = data['content'].decode('utf-8').splitlines()\n", + "\n", + "variant_upload = widgets.FileUpload(\n", + " accept='.json, .txt',\n", + " multiple=False\n", + ")\n", + "\n", + "variant_upload.observe(update_variant_file, names='value')\n", + "variant_upload" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": { - "id": "mASfltPUrLGI", + "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, - "cellView": "form", - "outputId": "c2135a87-a580-4272-f572-fb04a8f276a0" + "id": "mASfltPUrLGI", + "outputId": "8d67aea9-f3b3-467c-ee43-6cbdc5f33d62" }, "outputs": [ { @@ -580,7 +580,7 @@ } ], "source": [ - "# @title Variant Selecting Logic (just run)\n", + "# @title Variant Selecting Logic (always run this)\n", "\n", "clear_output()\n", "if len(variant_text.value) > 0:\n", @@ -600,15 +600,15 @@ "id": "YOfEUeNYrLGI" }, "source": [ - "For biologists, one-based indexing is commonly used. However, METL models were designed to used zero-based indexing. If one based indexing is needed, select it in the dropdown below." + "For biologists, one-based indexing is commonly used. However, METL models were designed to used zero-based indexing. If one-based indexing is needed, select it in the dropdown below." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": { - "id": "ecLAU9IOrLGK", - "cellView": "form" + "cellView": "form", + "id": "ecLAU9IOrLGK" }, "outputs": [], "source": [ @@ -630,14 +630,14 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": { - "id": "th1JyojWrLGN", - "cellView": "form" + "cellView": "form", + "id": "th1JyojWrLGN" }, "outputs": [], "source": [ - "# @title METL Predicting loop\n", + "# @title METL predicting loop\n", "output = []\n", "\n", "device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n", @@ -669,6 +669,293 @@ " })" ] }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 300 + }, + "id": "J5XJ-4memIYp", + "outputId": "a6514b60-6ad8-4bf0-849d-46cfaaf8a294" + }, + "outputs": [ + { + "output_type": "display_data", + "data": { + "text/plain": [ + "" + ], + "application/javascript": [ + "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})" + ] + }, + "metadata": {} + }, + { + "output_type": "stream", + "name": "stdout", + "text": [ + "[\n", + " {\n", + " \"wt\": \"MQYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE\",\n", + " \"variants\": [\n", + " \"T17P,T54F\",\n", + " \"V28L,F51A\",\n", + " \"T17P,V28L,F51A,T54F\"\n", + " ],\n", + " \"logits\": [\n", + " [\n", + " 0.7439557313919067,\n", + " 0.05980418622493744,\n", + " 0.024358421564102173,\n", + " 1.2682971954345703,\n", + " -0.32055193185806274,\n", + " 0.191476508975029,\n", + " 0.48838353157043457,\n", + " -1.4894952774047852,\n", + " -0.2861354947090149,\n", + " 2.8766539096832275,\n", + " 0.8954546451568604,\n", + " 0.5828602910041809,\n", + " -0.27455952763557434,\n", + " 1.636953353881836,\n", + " -0.1327229142189026,\n", + " 1.2955682277679443,\n", + " 0.6702917814254761,\n", + " -0.6201027631759644,\n", + " -0.25465258955955505,\n", + " -0.11269893497228622,\n", + " 0.5933904051780701,\n", + " 0.7011810541152954,\n", + " -0.08423371613025665,\n", + " 1.327063798904419,\n", + " -0.02551889419555664,\n", + " 0.6531369686126709,\n", + " -0.23584792017936707,\n", + " 0.06701026111841202,\n", + " -0.6870932579040527,\n", + " 0.515762209892273,\n", + " 0.5582014322280884,\n", + " 0.2519944906234741,\n", + " 0.09955058991909027,\n", + " -0.596206784248352,\n", + " 1.0137680768966675,\n", + " 0.11277520656585693,\n", + " 1.3569642305374146,\n", + " 0.08653093874454498,\n", + " -1.0626903772354126,\n", + " 0.8437974452972412,\n", + " 0.9905989170074463,\n", + " 0.5581963062286377,\n", + " -1.1692564487457275,\n", + " 0.7044106721878052,\n", + " 1.4692021608352661,\n", + " 0.48123621940612793,\n", + " -0.8125927448272705,\n", + " -0.7872622013092041,\n", + " 2.2367138862609863,\n", + " 1.0969915390014648,\n", + " -1.429244041442871,\n", + " 2.8315937519073486,\n", + " 0.004003586247563362,\n", + " 2.5654659271240234,\n", + " -0.22442318499088287\n", + " ],\n", + " [\n", + " -0.08697620034217834,\n", + " 1.3156228065490723,\n", + " 0.13171598315238953,\n", + " -0.6739966869354248,\n", + " -0.370316743850708,\n", + " -0.09067602455615997,\n", + " -0.5265511274337769,\n", + " -0.05593187361955643,\n", + " -0.18329080939292908,\n", + " -0.5598616600036621,\n", + " 0.1481737196445465,\n", + " -0.9173487424850464,\n", + " 0.9922858476638794,\n", + " 0.07365792989730835,\n", + " -0.795732319355011,\n", + " -0.12752263247966766,\n", + " -0.42093929648399353,\n", + " -0.30548492074012756,\n", + " -0.5884270071983337,\n", + " -1.527877926826477,\n", + " -0.5033639073371887,\n", + " -1.4557197093963623,\n", + " -0.307053804397583,\n", + " -0.9644832611083984,\n", + " 0.27372103929519653,\n", + " 0.32574689388275146,\n", + " 0.7832091450691223,\n", + " 0.538183867931366,\n", + " -0.25327128171920776,\n", + " 0.27871063351631165,\n", + " 0.748062014579773,\n", + " 0.00212039053440094,\n", + " -0.7900306582450867,\n", + " 0.21318531036376953,\n", + " -0.7907015681266785,\n", + " -0.4088272154331207,\n", + " -0.7049537897109985,\n", + " -0.06814368069171906,\n", + " -0.06530238687992096,\n", + " -0.8700871467590332,\n", + " -0.8985331654548645,\n", + " 0.7480582594871521,\n", + " -0.8626811504364014,\n", + " -0.7626336216926575,\n", + " 0.06568996608257294,\n", + " -0.01848423480987549,\n", + " 0.03380918502807617,\n", + " -0.32451409101486206,\n", + " 0.05743548274040222,\n", + " 0.10730474442243576,\n", + " -0.20049329102039337,\n", + " 0.0975203663110733,\n", + " -0.03245411440730095,\n", + " 0.5450597405433655,\n", + " -0.2210157811641693\n", + " ],\n", + " [\n", + " 0.7771878242492676,\n", + " 1.3114343881607056,\n", + " -0.012182354927062988,\n", + " 0.8552881479263306,\n", + " -0.7927926182746887,\n", + " -0.5721793174743652,\n", + " 0.010838627815246582,\n", + " -1.0582994222640991,\n", + " -0.23413538932800293,\n", + " 1.6550647020339966,\n", + " 0.7121488451957703,\n", + " -0.14398884773254395,\n", + " 0.4697418510913849,\n", + " 0.8055416941642761,\n", + " -0.3256339132785797,\n", + " 0.9476250410079956,\n", + " 0.5597456693649292,\n", + " -0.9523859024047852,\n", + " -0.7322959899902344,\n", + " -0.6324459910392761,\n", + " 0.3314003050327301,\n", + " -1.1419556140899658,\n", + " -0.894864559173584,\n", + " -0.344786673784256,\n", + " -0.03127695620059967,\n", + " 0.5853173732757568,\n", + " -0.12264762073755264,\n", + " 0.41519010066986084,\n", + " 0.041307512670755386,\n", + " 0.48165205121040344,\n", + " 0.8350603580474854,\n", + " -0.04630818963050842,\n", + " -0.5424583554267883,\n", + " -0.3669750988483429,\n", + " 0.7574549913406372,\n", + " -0.6029090881347656,\n", + " -0.1283474713563919,\n", + " -0.060376983135938644,\n", + " -0.643833577632904,\n", + " 0.38315483927726746,\n", + " 0.3885853588581085,\n", + " 0.8350547552108765,\n", + " -2.4018311500549316,\n", + " 0.37359121441841125,\n", + " 1.9198334217071533,\n", + " 0.8875982761383057,\n", + " -0.16969184577465057,\n", + " 0.22055387496948242,\n", + " 2.4585986137390137,\n", + " 1.2325514554977417,\n", + " -0.5369597673416138,\n", + " 1.9459927082061768,\n", + " -0.03438543528318405,\n", + " 2.015953302383423,\n", + " -0.20249487459659576\n", + " ]\n", + " ]\n", + " },\n", + " {\n", + " \"wt\": \"MQYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE\",\n", + " \"variants\": [\n", + " \"T13P,T33F\"\n", + " ],\n", + " \"logits\": [\n", + " [\n", + " 6.26312255859375,\n", + " -0.317566454410553,\n", + " 3.4302141666412354,\n", + " 1.4035505056381226,\n", + " 1.241213321685791,\n", + " 0.37521523237228394,\n", + " 5.061342716217041,\n", + " -1.1037918329238892,\n", + " -0.7942070364952087,\n", + " 2.8502368927001953,\n", + " -1.0051552057266235,\n", + " 1.0691003799438477,\n", + " -0.9276374578475952,\n", + " 10.052335739135742,\n", + " 2.5388412475585938,\n", + " 5.073174953460693,\n", + " 4.180245399475098,\n", + " -0.7394668459892273,\n", + " -0.624318540096283,\n", + " 0.4930281937122345,\n", + " 0.5181777477264404,\n", + " 1.98514723777771,\n", + " -0.5727043747901917,\n", + " 2.8816614151000977,\n", + " -2.3935630321502686,\n", + " -1.311666488647461,\n", + " -0.30938494205474854,\n", + " 0.4868788719177246,\n", + " 0.13409340381622314,\n", + " 0.3388042449951172,\n", + " 0.7581492066383362,\n", + " -0.970974326133728,\n", + " -0.18873749673366547,\n", + " -2.2353787422180176,\n", + " -0.9657674431800842,\n", + " -1.3321665525436401,\n", + " 1.2479448318481445,\n", + " 0.0030700089409947395,\n", + " -0.5822324752807617,\n", + " 1.5151475667953491,\n", + " 1.6513816118240356,\n", + " 0.7581412196159363,\n", + " -1.0448381900787354,\n", + " 0.831072211265564,\n", + " 0.8690347671508789,\n", + " 1.860695719718933,\n", + " 2.0122106075286865,\n", + " -0.9047555923461914,\n", + " 2.885678291320801,\n", + " -0.6415910720825195,\n", + " 0.899309515953064,\n", + " 1.5127564668655396,\n", + " -0.09488194435834885,\n", + " 0.14658042788505554,\n", + " 0.7432166934013367\n", + " ]\n", + " ]\n", + " }\n", + "]\n" + ] + } + ], + "source": [ + "# @title Display METL preditions\n", + "from IPython.display import Javascript\n", + "\n", + "display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight: 300})'''))\n", + "print(json.dumps(output, indent=2))" + ] + }, { "cell_type": "markdown", "metadata": { @@ -680,10 +967,10 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": { - "id": "nYz6NRB_rLGP", - "cellView": "form" + "cellView": "form", + "id": "nYz6NRB_rLGP" }, "outputs": [], "source": [ @@ -694,6 +981,11 @@ } ], "metadata": { + "accelerator": "GPU", + "colab": { + "gpuType": "T4", + "provenance": [] + }, "kernelspec": { "display_name": "Python 3", "name": "python3" @@ -710,13 +1002,9 @@ "pygments_lexer": "ipython3", "version": "3.11.5" }, - "colab": { - "provenance": [], - "gpuType": "T4" - }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "d438d18254c247aea4e1762205a4847f": { + "9675fa6ffbc24956b73f5678f1b1378e": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -731,14 +1019,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a04aee5de6734d78bf97f29057882c2c", - "IPY_MODEL_d8d8c5c034f04f38911318e67b00b279", - "IPY_MODEL_3d812121bbaa4ad3af2754d11118dfdf" + "IPY_MODEL_ce1b1efe8def42468305dc4aa9db46b7", + "IPY_MODEL_738f5ce4d5624866853a083c64061c17", + "IPY_MODEL_16b23742cc57451685c6d879074fa927" ], - "layout": "IPY_MODEL_d19f4dde776140e8b6d487f8ba356cc8" + "layout": "IPY_MODEL_d309692dd41d4ed39761a997e384ab9b" } }, - "a04aee5de6734d78bf97f29057882c2c": { + "ce1b1efe8def42468305dc4aa9db46b7": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -753,13 +1041,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_13d2242e978f4e95a9a41d49bab7d278", + "layout": "IPY_MODEL_a9983b7631014b1fa0f894e26dfa6baf", "placeholder": "​", - "style": "IPY_MODEL_e0f23caf9cfb4e8e8650ac0207f1a35d", + "style": "IPY_MODEL_7ee1cbd016db43fdaceaaa9461dc8c10", "value": "config.json: 100%" } }, - "d8d8c5c034f04f38911318e67b00b279": { + "738f5ce4d5624866853a083c64061c17": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -775,15 +1063,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2f49051f0cda4ac38d93d60c84c6cc0f", + "layout": "IPY_MODEL_de2b5bbb9de448f697c3ab63f657c269", "max": 282, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_d0126606e582428c86a0868a781a5822", + "style": "IPY_MODEL_dfa18e57365a43ee82560b0914e71ec4", "value": 282 } }, - "3d812121bbaa4ad3af2754d11118dfdf": { + "16b23742cc57451685c6d879074fa927": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -798,13 +1086,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_aaabbf4c748645339c1d11ebf0136d66", + "layout": "IPY_MODEL_8ed04e43e31741ad90b17f4d4a99fabd", "placeholder": "​", - "style": "IPY_MODEL_349381bae0924ce2b5d0306efb3778d0", - "value": " 282/282 [00:00<00:00, 6.71kB/s]" + "style": "IPY_MODEL_d530a1e92cab4d41bc9db878d456f950", + "value": " 282/282 [00:00<00:00, 15.9kB/s]" } }, - "d19f4dde776140e8b6d487f8ba356cc8": { + "d309692dd41d4ed39761a997e384ab9b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -856,7 +1144,7 @@ "width": null } }, - "13d2242e978f4e95a9a41d49bab7d278": { + "a9983b7631014b1fa0f894e26dfa6baf": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -908,7 +1196,7 @@ "width": null } }, - "e0f23caf9cfb4e8e8650ac0207f1a35d": { + "7ee1cbd016db43fdaceaaa9461dc8c10": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -923,7 +1211,7 @@ "description_width": "" } }, - "2f49051f0cda4ac38d93d60c84c6cc0f": { + "de2b5bbb9de448f697c3ab63f657c269": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -975,7 +1263,7 @@ "width": null } }, - "d0126606e582428c86a0868a781a5822": { + "dfa18e57365a43ee82560b0914e71ec4": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -991,7 +1279,7 @@ "description_width": "" } }, - "aaabbf4c748645339c1d11ebf0136d66": { + "8ed04e43e31741ad90b17f4d4a99fabd": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1043,7 +1331,7 @@ "width": null } }, - "349381bae0924ce2b5d0306efb3778d0": { + "d530a1e92cab4d41bc9db878d456f950": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1058,7 +1346,7 @@ "description_width": "" } }, - "763aa71022c64ef8a28ce64240271949": { + "df8289201f734f90ab0d23b39bce8ae2": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -1073,14 +1361,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_a68ae0355b48417c9415a0370f02b5c5", - "IPY_MODEL_79dc84d811784d7f83aa9abde6f48e7c", - "IPY_MODEL_be5ffdd32ce74735b6819dc2c8eeaa8f" + "IPY_MODEL_d8cda8df783d41ca951fb0e983bfae23", + "IPY_MODEL_4abd40e6c94648658e1187064b778a7c", + "IPY_MODEL_56e0917ad5ca44db84fb15e1d44db0da" ], - "layout": "IPY_MODEL_32deec8f5b414cc6ad6869f3e68b4c88" + "layout": "IPY_MODEL_e206c3c532824633809e3cffd58b9a1c" } }, - "a68ae0355b48417c9415a0370f02b5c5": { + "d8cda8df783d41ca951fb0e983bfae23": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1095,13 +1383,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_700d0fcd76684b6d8683859efc97b532", + "layout": "IPY_MODEL_7077f04cbcfb4dd5a44dc14d37381eaa", "placeholder": "​", - "style": "IPY_MODEL_bad4c385fa8a4efd8088400f580f7618", + "style": "IPY_MODEL_53afbb49039148a8a94e3f108fc6b52a", "value": "huggingface_wrapper.py: 100%" } }, - "79dc84d811784d7f83aa9abde6f48e7c": { + "4abd40e6c94648658e1187064b778a7c": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -1117,15 +1405,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5d95cdd43486472ba9e4a4fe91fdb99c", + "layout": "IPY_MODEL_fb6cd2c0c96b4d51917eb458cf8acc97", "max": 99960, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_466ae32bf3b648fc9237f2df7ef73e30", + "style": "IPY_MODEL_84e0849ad71b4c6b95daf28317d8fbb8", "value": 99960 } }, - "be5ffdd32ce74735b6819dc2c8eeaa8f": { + "56e0917ad5ca44db84fb15e1d44db0da": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1140,13 +1428,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c4795fdf2ec645ab8d6f44ba4f3d2fed", + "layout": "IPY_MODEL_0896776aeeaa4917b51cf946fea7663a", "placeholder": "​", - "style": "IPY_MODEL_d1cdc781de354248adbe248d5fbb9cc6", - "value": " 100k/100k [00:00<00:00, 1.39MB/s]" + "style": "IPY_MODEL_d2ef61286bc44c8eb48277bc29730524", + "value": " 100k/100k [00:00<00:00, 4.45MB/s]" } }, - "32deec8f5b414cc6ad6869f3e68b4c88": { + "e206c3c532824633809e3cffd58b9a1c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1198,7 +1486,7 @@ "width": null } }, - "700d0fcd76684b6d8683859efc97b532": { + "7077f04cbcfb4dd5a44dc14d37381eaa": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1250,7 +1538,7 @@ "width": null } }, - "bad4c385fa8a4efd8088400f580f7618": { + "53afbb49039148a8a94e3f108fc6b52a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1265,7 +1553,7 @@ "description_width": "" } }, - "5d95cdd43486472ba9e4a4fe91fdb99c": { + "fb6cd2c0c96b4d51917eb458cf8acc97": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1317,7 +1605,7 @@ "width": null } }, - "466ae32bf3b648fc9237f2df7ef73e30": { + "84e0849ad71b4c6b95daf28317d8fbb8": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1333,7 +1621,7 @@ "description_width": "" } }, - "c4795fdf2ec645ab8d6f44ba4f3d2fed": { + "0896776aeeaa4917b51cf946fea7663a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1385,7 +1673,7 @@ "width": null } }, - "d1cdc781de354248adbe248d5fbb9cc6": { + "d2ef61286bc44c8eb48277bc29730524": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1400,7 +1688,7 @@ "description_width": "" } }, - "5c9f38f207894e8fbe6eb1466f722b06": { + "bfe3b4b533f84e48a2b820cbfce9dcf2": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -1415,14 +1703,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2780bab4b72d4d02a2453f4c09f473ed", - "IPY_MODEL_2412e2bee90a4d78abcfc0d5c5395e1d", - "IPY_MODEL_2ba5948c078444fe83c37b02731c5d93" + "IPY_MODEL_7ad2ca1b07674e4292b04f441660be0e", + "IPY_MODEL_b0e5e2207ce54861b47d7b593f1eb884", + "IPY_MODEL_f91362bcfd624785a438371699a724b3" ], - "layout": "IPY_MODEL_e2f93ffdf05d4bc6a1ad3311cf583d32" + "layout": "IPY_MODEL_c05a432373d74c87ae7348e89e11c162" } }, - "2780bab4b72d4d02a2453f4c09f473ed": { + "7ad2ca1b07674e4292b04f441660be0e": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1437,13 +1725,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e6fa3fe9edd64ea19822a7b664e2aa70", + "layout": "IPY_MODEL_db6cde19ca394758abfbc4b9267fbe03", "placeholder": "​", - "style": "IPY_MODEL_0f29f48044214fa1972fb05859ad0c30", + "style": "IPY_MODEL_871af3cc19e1489e85834c0c20ea281d", "value": "model.safetensors: 100%" } }, - "2412e2bee90a4d78abcfc0d5c5395e1d": { + "b0e5e2207ce54861b47d7b593f1eb884": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -1459,15 +1747,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_49f8cca765184dcab283a6ae3b276d48", + "layout": "IPY_MODEL_9c81c4f4b09f49e3aff7c81d34dc6fa2", "max": 176, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_20c77d05af294ce5971a1980d73adc56", + "style": "IPY_MODEL_c239c3db91514be3aa4c84568f44d12d", "value": 176 } }, - "2ba5948c078444fe83c37b02731c5d93": { + "f91362bcfd624785a438371699a724b3": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -1482,13 +1770,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ce185df9b8a8450b8e22ad21521e3eda", + "layout": "IPY_MODEL_28e61c03f160467e8de45ce752620e13", "placeholder": "​", - "style": "IPY_MODEL_6cfb7e2fe12e4e2797bd787b98822f09", - "value": " 176/176 [00:00<00:00, 8.47kB/s]" + "style": "IPY_MODEL_e908a67f37334277a65ab3b3b4f861da", + "value": " 176/176 [00:00<00:00, 10.3kB/s]" } }, - "e2f93ffdf05d4bc6a1ad3311cf583d32": { + "c05a432373d74c87ae7348e89e11c162": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1540,7 +1828,7 @@ "width": null } }, - "e6fa3fe9edd64ea19822a7b664e2aa70": { + "db6cde19ca394758abfbc4b9267fbe03": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1592,7 +1880,7 @@ "width": null } }, - "0f29f48044214fa1972fb05859ad0c30": { + "871af3cc19e1489e85834c0c20ea281d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1607,7 +1895,7 @@ "description_width": "" } }, - "49f8cca765184dcab283a6ae3b276d48": { + "9c81c4f4b09f49e3aff7c81d34dc6fa2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1659,7 +1947,7 @@ "width": null } }, - "20c77d05af294ce5971a1980d73adc56": { + "c239c3db91514be3aa4c84568f44d12d": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -1675,7 +1963,7 @@ "description_width": "" } }, - "ce185df9b8a8450b8e22ad21521e3eda": { + "28e61c03f160467e8de45ce752620e13": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1727,7 +2015,7 @@ "width": null } }, - "6cfb7e2fe12e4e2797bd787b98822f09": { + "e908a67f37334277a65ab3b3b4f861da": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1742,7 +2030,7 @@ "description_width": "" } }, - "cbda63c2d2de449baff69851ca9342f4": { + "bda2b5a3958341afac697a9453d490ea": { "model_module": "@jupyter-widgets/controls", "model_name": "FileUploadModel", "model_module_version": "1.5.0", @@ -1764,13 +2052,13 @@ "disabled": false, "error": "", "icon": "upload", - "layout": "IPY_MODEL_284ae90b84c040bdb227127b3428b471", + "layout": "IPY_MODEL_b4771f2133ea478f883c72515a956e86", "metadata": [], "multiple": false, - "style": "IPY_MODEL_3cc0f506cc8540e3a1024d3dc12d8dae" + "style": "IPY_MODEL_55d27c64b1dd44b8867abc6afad050b6" } }, - "284ae90b84c040bdb227127b3428b471": { + "b4771f2133ea478f883c72515a956e86": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1822,7 +2110,7 @@ "width": null } }, - "3cc0f506cc8540e3a1024d3dc12d8dae": { + "55d27c64b1dd44b8867abc6afad050b6": { "model_module": "@jupyter-widgets/controls", "model_name": "ButtonStyleModel", "model_module_version": "1.5.0", @@ -1838,7 +2126,7 @@ "font_weight": "" } }, - "44c550288df5419aaca625377a46f076": { + "4514938ed3f84b38af2d31106559e99e": { "model_module": "@jupyter-widgets/controls", "model_name": "TextareaModel", "model_module_version": "1.5.0", @@ -1857,14 +2145,14 @@ "description": "Variant String:", "description_tooltip": null, "disabled": false, - "layout": "IPY_MODEL_19fcb40afff24a139a91964f3c74e26a", + "layout": "IPY_MODEL_038f471ab24244d4ab4ec1a8b523882a", "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", "rows": null, - "style": "IPY_MODEL_68ac59224bcd48fa8b02928f240e4df4", + "style": "IPY_MODEL_10fb8e7ac03a4b0a9a13774ccba7eea4", "value": "" } }, - "19fcb40afff24a139a91964f3c74e26a": { + "038f471ab24244d4ab4ec1a8b523882a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -1916,7 +2204,7 @@ "width": "500px" } }, - "68ac59224bcd48fa8b02928f240e4df4": { + "10fb8e7ac03a4b0a9a13774ccba7eea4": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -1931,7 +2219,7 @@ "description_width": "initial" } }, - "c8e0b77d472e4780b957978018c1db2f": { + "1e2171b76da74feb84ce1b1e4341c15b": { "model_module": "@jupyter-widgets/controls", "model_name": "FileUploadModel", "model_module_version": "1.5.0", @@ -1953,13 +2241,13 @@ "disabled": false, "error": "", "icon": "upload", - "layout": "IPY_MODEL_c33d2ae86f334b19bc2a4d61bf0aef7d", + "layout": "IPY_MODEL_d1a941b70bb541a88eb4cabe38477bdc", "metadata": [], "multiple": false, - "style": "IPY_MODEL_6f5c6fd2871f4f79999581a50494f725" + "style": "IPY_MODEL_04c99f8d2faf49928fb1e7cbd88e5f8a" } }, - "c33d2ae86f334b19bc2a4d61bf0aef7d": { + "d1a941b70bb541a88eb4cabe38477bdc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -2011,7 +2299,7 @@ "width": null } }, - "6f5c6fd2871f4f79999581a50494f725": { + "04c99f8d2faf49928fb1e7cbd88e5f8a": { "model_module": "@jupyter-widgets/controls", "model_name": "ButtonStyleModel", "model_module_version": "1.5.0", @@ -2028,8 +2316,7 @@ } } } - }, - "accelerator": "GPU" + } }, "nbformat": 4, "nbformat_minor": 0 From 75656ffc0fa1ba1ebcfcd8732ec0258a3abfd64c Mon Sep 17 00:00:00 2001 From: John Peters Date: Wed, 21 Aug 2024 16:27:02 -0500 Subject: [PATCH 03/10] "Changed finetuning to remove statement about epochs and changed colab version to also remove statement about apple silicone" --- notebooks/colab_finetuning.ipynb | 6 +----- notebooks/finetuning.ipynb | 4 +--- 2 files changed, 2 insertions(+), 8 deletions(-) diff --git a/notebooks/colab_finetuning.ipynb b/notebooks/colab_finetuning.ipynb index f504445..bea0423 100644 --- a/notebooks/colab_finetuning.ipynb +++ b/notebooks/colab_finetuning.ipynb @@ -479,11 +479,7 @@ "source": [ "All the arguments described above are contained in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args/pretrain_avgfp_local.txt), which can be fed directly into [train_target_model.py](train_target_model.py).\n", "\n", - "PyTorch Lightning has a built-in progress bar that is convenient for seeing training progress, but it does not display correctly in Jupyter when calling the script with `!python`. We are going to disable the progress bar for by setting the flag `--enable_progress_bar false`. Instead, we implemented a simple print statement to track training progress, which we will enable with the flag `--enable_simple_progress_messages`.\n", - "\n", - "The [train_target_model.py](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/code/train_target_model.py) script can support running on Apple Silicon with acceleration via MPS, but the version of PyTorch used in this environment is slightly outdated and does not support all MPS operations, so MPS support has been disabled. The script will run on GPU via CUDA if available, otherwise it will use CPUs.\n", - "\n", - "To speed up training for demo purposes, we also override `--max_epochs 50` and `--unfreeze_backbone_at_epoch 25`." + "PyTorch Lightning has a built-in progress bar that is convenient for seeing training progress, but it does not display correctly in Jupyter when calling the script with `!python`. We are going to disable the progress bar for by setting the flag `--enable_progress_bar false`. Instead, we implemented a simple print statement to track training progress, which we will enable with the flag `--enable_simple_progress_messages`." ] }, { diff --git a/notebooks/finetuning.ipynb b/notebooks/finetuning.ipynb index 7322c3d..8eb5603 100644 --- a/notebooks/finetuning.ipynb +++ b/notebooks/finetuning.ipynb @@ -338,9 +338,7 @@ "\n", "PyTorch Lightning has a built-in progress bar that is convenient for seeing training progress, but it does not display correctly in Jupyter when calling the script with `!python`. We are going to disable the progress bar for by setting the flag `--enable_progress_bar false`. Instead, we implemented a simple print statement to track training progress, which we will enable with the flag `--enable_simple_progress_messages`. \n", "\n", - "The [train_target_model.py](../code/train_target_model.py) script can support running on Apple Silicon with acceleration via MPS, but the version of PyTorch used in this environment is slightly outdated and does not support all MPS operations, so MPS support has been disabled. The script will run on GPU via CUDA if available, otherwise it will use CPUs.\n", - "\n", - "To speed up training for demo purposes, we also override `--max_epochs 50` and `--unfreeze_backbone_at_epoch 25`." + "The [train_target_model.py](../code/train_target_model.py) script can support running on Apple Silicon with acceleration via MPS, but the version of PyTorch used in this environment is slightly outdated and does not support all MPS operations, so MPS support has been disabled. The script will run on GPU via CUDA if available, otherwise it will use CPUs." ] }, { From f44e889fa65fadc1164ba41dbb8e1d6270ec5fe7 Mon Sep 17 00:00:00 2001 From: John Peters Date: Fri, 23 Aug 2024 14:41:42 -0500 Subject: [PATCH 04/10] "Updated notebook to fix some of the broken links" --- notebooks/colab_finetuning.ipynb | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/notebooks/colab_finetuning.ipynb b/notebooks/colab_finetuning.ipynb index bea0423..582fb83 100644 --- a/notebooks/colab_finetuning.ipynb +++ b/notebooks/colab_finetuning.ipynb @@ -188,7 +188,7 @@ }, "source": [ "# Acquire a pretrained model\n", - "Pretrained METL models are available in the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository. You can use one of those, or you can pretrain your own METL model (see [pretraining.ipynb](pretraining.ipynb)).\n", + "Pretrained METL models are available in the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository. You can use one of those, or you can pretrain your own METL model (see [pretraining.ipynb](https://github.com/gitter-lab/metl/blob/main/notebooks/pretraining.ipynb)).\n", "\n", "For demonstration purposes, we include a pretrained avGFP METL-Local model from the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository in the [pretrained_models](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/pretrained_models) directory. This model is `METL-L-2M-3D-GFP` (UUID: `Hr4GNHws`).\n", "It is the avGFP METL-Local source model we used for the analysis in our preprint.\n", @@ -205,7 +205,7 @@ "source": [ "# Training arguments\n", "\n", - "The script for finetuning on experimental data is [train_target_model.py](train_target_model.py). This script has a number of arguments you can view by uncommenting and running the below cell. There are additional arguments related to architecture that won't show up if you run the command, but you can view them in [models.py](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/code/models.py) in the `TransferModel` class." + "The script for finetuning on experimental data is [train_target_model.py](https://github.com/gitter-lab/metl/blob/main/code/train_target_model.py). This script has a number of arguments you can view by uncommenting and running the below cell. There are additional arguments related to architecture that won't show up if you run the command, but you can view them in [models.py](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/code/models.py) in the `TransferModel` class." ] }, { @@ -227,7 +227,7 @@ "id": "7ec8c31b-2da2-4ba7-9f4e-39e30dce8056" }, "source": [ - "We set up finetuning arguments for this example in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args/pretrain_avgfp_local.txt) in the [args](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args) directory. This argument file can be used directly with [train_target_model.py](train_target_model.py) by calling the command `!python code/train_target_model.py @args/finetune_avgfp_local.txt` (we do this in the next section).\n", + "We set up finetuning arguments for this example in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args/pretrain_avgfp_local.txt) in the [args](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args) directory. This argument file can be used directly with [train_target_model.py](https://github.com/gitter-lab/metl/blob/main/code/train_target_model.py) by calling the command `!python code/train_target_model.py @args/finetune_avgfp_local.txt` (we do this in the next section).\n", "\n", "Uncomment and run the cell below to view the contents of the argument file. The sections below will walk through and explain the key arguments." ] @@ -477,7 +477,7 @@ "id": "8d3d8d23-9d54-4888-842d-4fc8fd843b40" }, "source": [ - "All the arguments described above are contained in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args/pretrain_avgfp_local.txt), which can be fed directly into [train_target_model.py](train_target_model.py).\n", + "All the arguments described above are contained in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args/pretrain_avgfp_local.txt), which can be fed directly into [train_target_model.py](https://github.com/gitter-lab/metl/blob/main/code/train_target_model.py).\n", "\n", "PyTorch Lightning has a built-in progress bar that is convenient for seeing training progress, but it does not display correctly in Jupyter when calling the script with `!python`. We are going to disable the progress bar for by setting the flag `--enable_progress_bar false`. Instead, we implemented a simple print statement to track training progress, which we will enable with the flag `--enable_simple_progress_messages`." ] From c1e53560ed9a8e5242eea51964d57d232ac12460 Mon Sep 17 00:00:00 2001 From: John Peters Date: Fri, 23 Aug 2024 14:42:56 -0500 Subject: [PATCH 05/10] "Renamed colab predicting notebook to match other notebook names better" --- ...redicting.ipynb => colab_predicting.ipynb} | 956 +++++++++--------- 1 file changed, 477 insertions(+), 479 deletions(-) rename notebooks/{colab_metl_predicting.ipynb => colab_predicting.ipynb} (98%) diff --git a/notebooks/colab_metl_predicting.ipynb b/notebooks/colab_predicting.ipynb similarity index 98% rename from notebooks/colab_metl_predicting.ipynb rename to notebooks/colab_predicting.ipynb index 1939cc8..726bb1b 100644 --- a/notebooks/colab_metl_predicting.ipynb +++ b/notebooks/colab_predicting.ipynb @@ -24,8 +24,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/68.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m68.3/68.3 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h" @@ -50,8 +50,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "--2024-08-19 21:44:05-- https://raw.githubusercontent.com/gitter-lab/metl-pretrained/main/pdbs/2qmt_p.pdb\n", "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n", @@ -193,8 +193,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n", "Token is valid (permission: write).\n", @@ -203,46 +203,46 @@ ] }, { - "output_type": "display_data", "data": { - "text/plain": [ - "config.json: 0%| | 0.00/282 [00:00" - ], "text/html": [ "\n", "\n" + ], + "text/plain": [ + "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Textarea(value='', description='Variant String:', layout=Layout(height='100px', width='500px'), placeholder='[…" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "4514938ed3f84b38af2d31106559e99e", "version_major": 2, - "version_minor": 0, - "model_id": "4514938ed3f84b38af2d31106559e99e" - } + "version_minor": 0 + }, + "text/plain": [ + "Textarea(value='', description='Variant String:', layout=Layout(height='100px', width='500px'), placeholder='[…" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -523,18 +523,18 @@ }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "FileUpload(value={}, accept='.json, .txt', description='Upload')" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "1e2171b76da74feb84ce1b1e4341c15b", "version_major": 2, - "version_minor": 0, - "model_id": "1e2171b76da74feb84ce1b1e4341c15b" - } + "version_minor": 0 + }, + "text/plain": [ + "FileUpload(value={}, accept='.json, .txt', description='Upload')" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -572,8 +572,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Using variant placeholder\n" ] @@ -682,20 +682,18 @@ }, "outputs": [ { - "output_type": "display_data", "data": { + "application/javascript": "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})", "text/plain": [ "" - ], - "application/javascript": [ - "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "[\n", " {\n", @@ -1004,98 +1002,10 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "9675fa6ffbc24956b73f5678f1b1378e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ce1b1efe8def42468305dc4aa9db46b7", - "IPY_MODEL_738f5ce4d5624866853a083c64061c17", - "IPY_MODEL_16b23742cc57451685c6d879074fa927" - ], - "layout": "IPY_MODEL_d309692dd41d4ed39761a997e384ab9b" - } - }, - "ce1b1efe8def42468305dc4aa9db46b7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a9983b7631014b1fa0f894e26dfa6baf", - "placeholder": "​", - "style": "IPY_MODEL_7ee1cbd016db43fdaceaaa9461dc8c10", - "value": "config.json: 100%" - } - }, - "738f5ce4d5624866853a083c64061c17": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_de2b5bbb9de448f697c3ab63f657c269", - "max": 282, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_dfa18e57365a43ee82560b0914e71ec4", - "value": 282 - } - }, - "16b23742cc57451685c6d879074fa927": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8ed04e43e31741ad90b17f4d4a99fabd", - "placeholder": "​", - "style": "IPY_MODEL_d530a1e92cab4d41bc9db878d456f950", - "value": " 282/282 [00:00<00:00, 15.9kB/s]" - } - }, - "d309692dd41d4ed39761a997e384ab9b": { + "038f471ab24244d4ab4ec1a8b523882a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1122,7 +1032,7 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": null, + "height": "100px", "justify_content": null, "justify_items": null, "left": null, @@ -1141,13 +1051,29 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "500px" } }, - "a9983b7631014b1fa0f894e26dfa6baf": { + "04c99f8d2faf49928fb1e7cbd88e5f8a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ButtonStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "0896776aeeaa4917b51cf946fea7663a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1196,10 +1122,10 @@ "width": null } }, - "7ee1cbd016db43fdaceaaa9461dc8c10": { + "10fb8e7ac03a4b0a9a13774ccba7eea4": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1208,13 +1134,62 @@ "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "description_width": "" + "description_width": "initial" } }, - "de2b5bbb9de448f697c3ab63f657c269": { + "16b23742cc57451685c6d879074fa927": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_8ed04e43e31741ad90b17f4d4a99fabd", + "placeholder": "​", + "style": "IPY_MODEL_d530a1e92cab4d41bc9db878d456f950", + "value": " 282/282 [00:00<00:00, 15.9kB/s]" + } + }, + "1e2171b76da74feb84ce1b1e4341c15b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FileUploadModel", + "state": { + "_counter": 0, + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FileUploadModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "FileUploadView", + "accept": ".json, .txt", + "button_style": "", + "data": [], + "description": "Upload", + "description_tooltip": null, + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_d1a941b70bb541a88eb4cabe38477bdc", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_04c99f8d2faf49928fb1e7cbd88e5f8a" + } + }, + "28e61c03f160467e8de45ce752620e13": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1263,30 +1238,116 @@ "width": null } }, - "dfa18e57365a43ee82560b0914e71ec4": { + "4514938ed3f84b38af2d31106559e99e": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "TextareaModel", "state": { + "_dom_classes": [ + "variant_text_area" + ], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "TextareaModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "8ed04e43e31741ad90b17f4d4a99fabd": { - "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", - "model_module_version": "1.2.0", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "TextareaView", + "continuous_update": true, + "description": "Variant String:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_038f471ab24244d4ab4ec1a8b523882a", + "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", + "rows": null, + "style": "IPY_MODEL_10fb8e7ac03a4b0a9a13774ccba7eea4", + "value": "" + } + }, + "4abd40e6c94648658e1187064b778a7c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fb6cd2c0c96b4d51917eb458cf8acc97", + "max": 99960, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_84e0849ad71b4c6b95daf28317d8fbb8", + "value": 99960 + } + }, + "53afbb49039148a8a94e3f108fc6b52a": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "55d27c64b1dd44b8867abc6afad050b6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ButtonStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "56e0917ad5ca44db84fb15e1d44db0da": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0896776aeeaa4917b51cf946fea7663a", + "placeholder": "​", + "style": "IPY_MODEL_d2ef61286bc44c8eb48277bc29730524", + "value": " 100k/100k [00:00<00:00, 4.45MB/s]" + } + }, + "7077f04cbcfb4dd5a44dc14d37381eaa": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", @@ -1331,47 +1392,34 @@ "width": null } }, - "d530a1e92cab4d41bc9db878d456f950": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "df8289201f734f90ab0d23b39bce8ae2": { + "738f5ce4d5624866853a083c64061c17": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d8cda8df783d41ca951fb0e983bfae23", - "IPY_MODEL_4abd40e6c94648658e1187064b778a7c", - "IPY_MODEL_56e0917ad5ca44db84fb15e1d44db0da" - ], - "layout": "IPY_MODEL_e206c3c532824633809e3cffd58b9a1c" + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_de2b5bbb9de448f697c3ab63f657c269", + "max": 282, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_dfa18e57365a43ee82560b0914e71ec4", + "value": 282 } }, - "d8cda8df783d41ca951fb0e983bfae23": { + "7ad2ca1b07674e4292b04f441660be0e": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -1383,61 +1431,62 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7077f04cbcfb4dd5a44dc14d37381eaa", + "layout": "IPY_MODEL_db6cde19ca394758abfbc4b9267fbe03", "placeholder": "​", - "style": "IPY_MODEL_53afbb49039148a8a94e3f108fc6b52a", - "value": "huggingface_wrapper.py: 100%" + "style": "IPY_MODEL_871af3cc19e1489e85834c0c20ea281d", + "value": "model.safetensors: 100%" } }, - "4abd40e6c94648658e1187064b778a7c": { + "7ee1cbd016db43fdaceaaa9461dc8c10": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fb6cd2c0c96b4d51917eb458cf8acc97", - "max": 99960, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_84e0849ad71b4c6b95daf28317d8fbb8", - "value": 99960 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "56e0917ad5ca44db84fb15e1d44db0da": { + "84e0849ad71b4c6b95daf28317d8fbb8": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0896776aeeaa4917b51cf946fea7663a", - "placeholder": "​", - "style": "IPY_MODEL_d2ef61286bc44c8eb48277bc29730524", - "value": " 100k/100k [00:00<00:00, 4.45MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "e206c3c532824633809e3cffd58b9a1c": { + "871af3cc19e1489e85834c0c20ea281d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "8ed04e43e31741ad90b17f4d4a99fabd": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1486,10 +1535,32 @@ "width": null } }, - "7077f04cbcfb4dd5a44dc14d37381eaa": { + "9675fa6ffbc24956b73f5678f1b1378e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_ce1b1efe8def42468305dc4aa9db46b7", + "IPY_MODEL_738f5ce4d5624866853a083c64061c17", + "IPY_MODEL_16b23742cc57451685c6d879074fa927" + ], + "layout": "IPY_MODEL_d309692dd41d4ed39761a997e384ab9b" + } + }, + "9c81c4f4b09f49e3aff7c81d34dc6fa2": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1538,25 +1609,10 @@ "width": null } }, - "53afbb49039148a8a94e3f108fc6b52a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "fb6cd2c0c96b4d51917eb458cf8acc97": { + "a9983b7631014b1fa0f894e26dfa6baf": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1605,26 +1661,34 @@ "width": null } }, - "84e0849ad71b4c6b95daf28317d8fbb8": { + "b0e5e2207ce54861b47d7b593f1eb884": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_9c81c4f4b09f49e3aff7c81d34dc6fa2", + "max": 176, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c239c3db91514be3aa4c84568f44d12d", + "value": 176 } }, - "0896776aeeaa4917b51cf946fea7663a": { + "b4771f2133ea478f883c72515a956e86": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1673,113 +1737,60 @@ "width": null } }, - "d2ef61286bc44c8eb48277bc29730524": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bfe3b4b533f84e48a2b820cbfce9dcf2": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_7ad2ca1b07674e4292b04f441660be0e", - "IPY_MODEL_b0e5e2207ce54861b47d7b593f1eb884", - "IPY_MODEL_f91362bcfd624785a438371699a724b3" - ], - "layout": "IPY_MODEL_c05a432373d74c87ae7348e89e11c162" - } - }, - "7ad2ca1b07674e4292b04f441660be0e": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_db6cde19ca394758abfbc4b9267fbe03", - "placeholder": "​", - "style": "IPY_MODEL_871af3cc19e1489e85834c0c20ea281d", - "value": "model.safetensors: 100%" - } - }, - "b0e5e2207ce54861b47d7b593f1eb884": { + "bda2b5a3958341afac697a9453d490ea": { "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", "model_module_version": "1.5.0", + "model_name": "FileUploadModel", "state": { + "_counter": 0, "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "FileUploadModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", + "_view_name": "FileUploadView", + "accept": ".pdb", + "button_style": "", + "data": [], + "description": "Upload", "description_tooltip": null, - "layout": "IPY_MODEL_9c81c4f4b09f49e3aff7c81d34dc6fa2", - "max": 176, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c239c3db91514be3aa4c84568f44d12d", - "value": 176 + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_b4771f2133ea478f883c72515a956e86", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_55d27c64b1dd44b8867abc6afad050b6" } }, - "f91362bcfd624785a438371699a724b3": { + "bfe3b4b533f84e48a2b820cbfce9dcf2": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_28e61c03f160467e8de45ce752620e13", - "placeholder": "​", - "style": "IPY_MODEL_e908a67f37334277a65ab3b3b4f861da", - "value": " 176/176 [00:00<00:00, 10.3kB/s]" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_7ad2ca1b07674e4292b04f441660be0e", + "IPY_MODEL_b0e5e2207ce54861b47d7b593f1eb884", + "IPY_MODEL_f91362bcfd624785a438371699a724b3" + ], + "layout": "IPY_MODEL_c05a432373d74c87ae7348e89e11c162" } }, "c05a432373d74c87ae7348e89e11c162": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1828,10 +1839,47 @@ "width": null } }, - "db6cde19ca394758abfbc4b9267fbe03": { + "c239c3db91514be3aa4c84568f44d12d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "ce1b1efe8def42468305dc4aa9db46b7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_a9983b7631014b1fa0f894e26dfa6baf", + "placeholder": "​", + "style": "IPY_MODEL_7ee1cbd016db43fdaceaaa9461dc8c10", + "value": "config.json: 100%" + } + }, + "d1a941b70bb541a88eb4cabe38477bdc": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1880,10 +1928,10 @@ "width": null } }, - "871af3cc19e1489e85834c0c20ea281d": { + "d2ef61286bc44c8eb48277bc29730524": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1895,10 +1943,10 @@ "description_width": "" } }, - "9c81c4f4b09f49e3aff7c81d34dc6fa2": { + "d309692dd41d4ed39761a997e384ab9b": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1947,26 +1995,46 @@ "width": null } }, - "c239c3db91514be3aa4c84568f44d12d": { + "d530a1e92cab4d41bc9db878d456f950": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "28e61c03f160467e8de45ce752620e13": { + "d8cda8df783d41ca951fb0e983bfae23": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7077f04cbcfb4dd5a44dc14d37381eaa", + "placeholder": "​", + "style": "IPY_MODEL_53afbb49039148a8a94e3f108fc6b52a", + "value": "huggingface_wrapper.py: 100%" + } + }, + "db6cde19ca394758abfbc4b9267fbe03": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2015,53 +2083,10 @@ "width": null } }, - "e908a67f37334277a65ab3b3b4f861da": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "bda2b5a3958341afac697a9453d490ea": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FileUploadModel", - "model_module_version": "1.5.0", - "state": { - "_counter": 0, - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FileUploadModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "FileUploadView", - "accept": ".pdb", - "button_style": "", - "data": [], - "description": "Upload", - "description_tooltip": null, - "disabled": false, - "error": "", - "icon": "upload", - "layout": "IPY_MODEL_b4771f2133ea478f883c72515a956e86", - "metadata": [], - "multiple": false, - "style": "IPY_MODEL_55d27c64b1dd44b8867abc6afad050b6" - } - }, - "b4771f2133ea478f883c72515a956e86": { + "de2b5bbb9de448f697c3ab63f657c269": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2110,52 +2135,48 @@ "width": null } }, - "55d27c64b1dd44b8867abc6afad050b6": { + "df8289201f734f90ab0d23b39bce8ae2": { "model_module": "@jupyter-widgets/controls", - "model_name": "ButtonStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_d8cda8df783d41ca951fb0e983bfae23", + "IPY_MODEL_4abd40e6c94648658e1187064b778a7c", + "IPY_MODEL_56e0917ad5ca44db84fb15e1d44db0da" + ], + "layout": "IPY_MODEL_e206c3c532824633809e3cffd58b9a1c" } }, - "4514938ed3f84b38af2d31106559e99e": { + "dfa18e57365a43ee82560b0914e71ec4": { "model_module": "@jupyter-widgets/controls", - "model_name": "TextareaModel", "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", "state": { - "_dom_classes": [ - "variant_text_area" - ], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "TextareaModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "TextareaView", - "continuous_update": true, - "description": "Variant String:", - "description_tooltip": null, - "disabled": false, - "layout": "IPY_MODEL_038f471ab24244d4ab4ec1a8b523882a", - "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", - "rows": null, - "style": "IPY_MODEL_10fb8e7ac03a4b0a9a13774ccba7eea4", - "value": "" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "038f471ab24244d4ab4ec1a8b523882a": { + "e206c3c532824633809e3cffd58b9a1c": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2182,7 +2203,7 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": "100px", + "height": null, "justify_content": null, "justify_items": null, "left": null, @@ -2201,13 +2222,13 @@ "right": null, "top": null, "visibility": null, - "width": "500px" + "width": null } }, - "10fb8e7ac03a4b0a9a13774ccba7eea4": { + "e908a67f37334277a65ab3b3b4f861da": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -2216,41 +2237,34 @@ "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "description_width": "initial" + "description_width": "" } }, - "1e2171b76da74feb84ce1b1e4341c15b": { + "f91362bcfd624785a438371699a724b3": { "model_module": "@jupyter-widgets/controls", - "model_name": "FileUploadModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_counter": 0, "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FileUploadModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "FileUploadView", - "accept": ".json, .txt", - "button_style": "", - "data": [], - "description": "Upload", + "_view_name": "HTMLView", + "description": "", "description_tooltip": null, - "disabled": false, - "error": "", - "icon": "upload", - "layout": "IPY_MODEL_d1a941b70bb541a88eb4cabe38477bdc", - "metadata": [], - "multiple": false, - "style": "IPY_MODEL_04c99f8d2faf49928fb1e7cbd88e5f8a" + "layout": "IPY_MODEL_28e61c03f160467e8de45ce752620e13", + "placeholder": "​", + "style": "IPY_MODEL_e908a67f37334277a65ab3b3b4f861da", + "value": " 176/176 [00:00<00:00, 10.3kB/s]" } }, - "d1a941b70bb541a88eb4cabe38477bdc": { + "fb6cd2c0c96b4d51917eb458cf8acc97": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2298,26 +2312,10 @@ "visibility": null, "width": null } - }, - "04c99f8d2faf49928fb1e7cbd88e5f8a": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ButtonStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" - } } } } }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} From 42d5984b29ef6f78428e05cc5d747cfff163be00 Mon Sep 17 00:00:00 2001 From: John Peters Date: Fri, 23 Aug 2024 15:17:10 -0500 Subject: [PATCH 06/10] "Added more entries to the table" --- notebooks/README.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/notebooks/README.md b/notebooks/README.md index 351aef1..76b1200 100644 --- a/notebooks/README.md +++ b/notebooks/README.md @@ -7,4 +7,6 @@ This directory contains example notebooks that show how to use various aspects o | [generate_rosetta_dataset.ipynb](generate_rosetta_dataset.ipynb) | Generate a Rosetta pretraining dataset using molecular simulations data obtained from the [metl-sim](https://github.com/gitter-lab/metl-sim) repository. | | [train_test_split.ipynb](train_test_split.ipynb) | Create train, validation, and test splits for experimental datasets. | | [pretraining.ipynb](pretraining.ipynb) | Pretrain METL models with Rosetta data. | -| [finetuning.ipynb](finetuning.ipynb) | Finetune METL models with experimental data. | \ No newline at end of file +| [finetuning.ipynb](finetuning.ipynb) | Finetune METL models with experimental data. | +| [colab_finetuning.ipynb](colab_finetuning.ipynb) | Finetune METL models with experimental data on Colab. | +| [colab_predicting.ipynb](colab_predicting.ipynb) | Predict with METL models with on Colab. | \ No newline at end of file From 113935198bdb301f6d4e785be00a470634870f9d Mon Sep 17 00:00:00 2001 From: John Peters Date: Fri, 23 Aug 2024 15:54:54 -0500 Subject: [PATCH 07/10] "Fixed more notebook comments" --- notebooks/colab_finetuning.ipynb | 7 +- notebooks/colab_predicting.ipynb | 1575 +++++++++++++++--------------- 2 files changed, 770 insertions(+), 812 deletions(-) diff --git a/notebooks/colab_finetuning.ipynb b/notebooks/colab_finetuning.ipynb index 582fb83..1ed20e7 100644 --- a/notebooks/colab_finetuning.ipynb +++ b/notebooks/colab_finetuning.ipynb @@ -737,7 +737,7 @@ }, "source": [ "## Load checkpoint with metl-pretrained package\n", - "Using the hugging face wrapper, we can load the metl library and use it to load our newly trained model checkpoint and inference with it." + "Using the Hugging Face wrapper, we can load the metl library and use it to load our newly trained model checkpoint and run inference with it." ] }, { @@ -964,9 +964,6 @@ "metadata": { "accelerator": "GPU", "colab": { - "collapsed_sections": [ - "f33fc407-6ab1-45e3-8e6a-9b717dca7f00" - ], "gpuType": "T4", "provenance": [] }, @@ -2019,4 +2016,4 @@ }, "nbformat": 4, "nbformat_minor": 5 -} +} \ No newline at end of file diff --git a/notebooks/colab_predicting.ipynb b/notebooks/colab_predicting.ipynb index 726bb1b..01becde 100644 --- a/notebooks/colab_predicting.ipynb +++ b/notebooks/colab_predicting.ipynb @@ -8,30 +8,19 @@ "source": [ "This notebook will show an example on how to use METL models through hugging face to predict on more than the sequences allowed by the demo.\n", "\n", - "First, we will import the required 🤗 modules in order to download the METL wrapper through their API." + "The example provided through the notebook uses a pretrained METL model to predict GB1 binding affinity.\n", + "\n", + "First, we will download some dependencies not included in Colab and import the required modules that we will need to download the METL model through 🤗 and predict with it." ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 6, "metadata": { "cellView": "form", - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "WkNKKIqXr4OU", - "outputId": "3fcf08b6-b863-47cd-cd72-bed1ba1f1ce9" + "id": "WkNKKIqXr4OU" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/68.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m68.3/68.3 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", - "\u001b[?25h" - ] - } - ], + "outputs": [], "source": [ "# @title Installing libraries not included with colab\n", "!pip install -q biopandas==0.5.1" @@ -39,42 +28,42 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 7, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "tP_HrR5YSiqk", - "outputId": "428ff993-1446-4c5d-a4a6-185cb346f176" + "outputId": "c4f0a814-5daf-45b1-8d7f-cb7fbbbb3142" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ - "--2024-08-19 21:44:05-- https://raw.githubusercontent.com/gitter-lab/metl-pretrained/main/pdbs/2qmt_p.pdb\n", + "--2024-08-23 20:50:43-- https://raw.githubusercontent.com/gitter-lab/metl-pretrained/main/pdbs/2qmt_p.pdb\n", "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n", "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 78764 (77K) [text/plain]\n", "Saving to: ‘2qmt_p.pdb’\n", "\n", - "\r2qmt_p.pdb 0%[ ] 0 --.-KB/s \r2qmt_p.pdb 100%[===================>] 76.92K --.-KB/s in 0.01s \n", + "\r2qmt_p.pdb 0%[ ] 0 --.-KB/s \r2qmt_p.pdb 100%[===================>] 76.92K --.-KB/s in 0.009s \n", "\n", - "2024-08-19 21:44:05 (5.27 MB/s) - ‘2qmt_p.pdb’ saved [78764/78764]\n", + "2024-08-23 20:50:43 (8.73 MB/s) - ‘2qmt_p.pdb’ saved [78764/78764]\n", "\n" ] } ], "source": [ - "# @title download the example pdb file\n", + "# @title Download the example pdb file\n", "!wget -O 2qmt_p.pdb https://raw.githubusercontent.com/gitter-lab/metl-pretrained/main/pdbs/2qmt_p.pdb" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 8, "metadata": { "cellView": "form", "id": "mpjvGjzArLF1" @@ -96,28 +85,8 @@ "\n", "# Declaring this here so that it's available regardless if later cells are run or not\n", "variant_file = None\n", - "pdb_file_path = '2qmt_p.pdb'" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "sfBGUCJorLF5" - }, - "source": [ - "Next we will define a necessary helper function for later on in the file." - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "cellView": "form", - "id": "bY_fMXgMrLF6" - }, - "outputs": [], - "source": [ - "# @title To zero based helper functoin\n", + "pdb_file_path = '2qmt_p.pdb'\n", + "\n", "def to_zero_based(variants):\n", " zero_based = []\n", " for line in variants:\n", @@ -146,55 +115,55 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 9, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 202, "referenced_widgets": [ - "9675fa6ffbc24956b73f5678f1b1378e", - "ce1b1efe8def42468305dc4aa9db46b7", - "738f5ce4d5624866853a083c64061c17", - "16b23742cc57451685c6d879074fa927", - "d309692dd41d4ed39761a997e384ab9b", - "a9983b7631014b1fa0f894e26dfa6baf", - "7ee1cbd016db43fdaceaaa9461dc8c10", - "de2b5bbb9de448f697c3ab63f657c269", - "dfa18e57365a43ee82560b0914e71ec4", - "8ed04e43e31741ad90b17f4d4a99fabd", - "d530a1e92cab4d41bc9db878d456f950", - "df8289201f734f90ab0d23b39bce8ae2", - "d8cda8df783d41ca951fb0e983bfae23", - "4abd40e6c94648658e1187064b778a7c", - "56e0917ad5ca44db84fb15e1d44db0da", - "e206c3c532824633809e3cffd58b9a1c", - "7077f04cbcfb4dd5a44dc14d37381eaa", - "53afbb49039148a8a94e3f108fc6b52a", - "fb6cd2c0c96b4d51917eb458cf8acc97", - "84e0849ad71b4c6b95daf28317d8fbb8", - "0896776aeeaa4917b51cf946fea7663a", - "d2ef61286bc44c8eb48277bc29730524", - "bfe3b4b533f84e48a2b820cbfce9dcf2", - "7ad2ca1b07674e4292b04f441660be0e", - "b0e5e2207ce54861b47d7b593f1eb884", - "f91362bcfd624785a438371699a724b3", - "c05a432373d74c87ae7348e89e11c162", - "db6cde19ca394758abfbc4b9267fbe03", - "871af3cc19e1489e85834c0c20ea281d", - "9c81c4f4b09f49e3aff7c81d34dc6fa2", - "c239c3db91514be3aa4c84568f44d12d", - "28e61c03f160467e8de45ce752620e13", - "e908a67f37334277a65ab3b3b4f861da" + "0e89a61715a2405795e9204d487e16a7", + "706504f4e2b44623b06d81e4bfb9fec6", + "6139b052d48b4b8a88bf1d0cfbee89d1", + "cb8a74409964470399e759c9c373c1fb", + "1127b0a462414b60937c6f38b1adee12", + "fc53173bf32d4afabfdf9ee50cb3b00a", + "eb4407c45c0e4ac9b0fed9b2e0c56ff9", + "b31c4d8d76224754846690925ecf8910", + "554bd3d19ad24ab79e011fe89c768793", + "b292e0907116481f8a67236d5fff4023", + "948b99490be74d4483ce432455905bda", + "9a4fa89166dc4ed9ba241082e0b295d0", + "e89279b489fc4dcaa507ff5b8e67d890", + "5268bf3171724c6aabba1a5e491120d0", + "174d3daccf6542128f9e665d225da25f", + "49c094a124f6497f81e8d99d5f539c3e", + "aceb1c83343f42f5ba327ea0181f54ba", + "3f8c6dc919de4ca79ac2d5bb4cac2d4f", + "279615cb9a9f4d0a939e915aadb1390b", + "706b2fd4323d42129ef68cf138535fe8", + "26ba5323b65441d5ae3bca32edeaeb6b", + "eb142d0f070c47a19b80d327c79929db", + "3db12ffb0cc64e47a9445ed6f30ad4a7", + "c064486920084853839ba97bbf7adcef", + "c48bf3a44113463e9a2ce990ca58fd89", + "49ed05570a474155ac1cc9c920956277", + "b8de008d9ea8492d89b4220190f341df", + "561825fd86a24139b76b0714fcf4ee07", + "e243c6dbff6f462ba643e44ad05d6199", + "dca0f426047a4fc69905113bfab76ddf", + "61459277623143eeae90e152128d8e41", + "0cff14529ed44602992665ab2769cc3a", + "840350d162c54b248ad178915821d3e2" ] }, "id": "vIp69-KLrLF8", - "outputId": "2baded08-7aac-4cd7-bdfc-30333473a53f" + "outputId": "0a5081fe-d8ae-45cb-ab38-0352ccb33fcd" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n", "Token is valid (permission: write).\n", @@ -203,46 +172,46 @@ ] }, { + "output_type": "display_data", "data": { + "text/plain": [ + "config.json: 0%| | 0.00/269 [00:00" + ], "text/html": [ "\n", "\n" - ], - "text/plain": [ - "" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} }, { + "output_type": "display_data", "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4514938ed3f84b38af2d31106559e99e", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ "Textarea(value='', description='Variant String:', layout=Layout(height='100px', width='500px'), placeholder='[…" - ] + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "652003f6d3774d4f96dccccc6531d9c2" + } }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ @@ -506,35 +465,35 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 14, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 49, "referenced_widgets": [ - "1e2171b76da74feb84ce1b1e4341c15b", - "d1a941b70bb541a88eb4cabe38477bdc", - "04c99f8d2faf49928fb1e7cbd88e5f8a" + "f77f31e709c84c48b86316dbe9d7b0c9", + "bd9755e9b09148d480b2d4604aa9ff16", + "3171d7d717ba4baba7ac948a4fb60529" ] }, "id": "8TLYi6orHN_8", - "outputId": "64901ee5-a8b0-4766-bf44-2273cb056bb8" + "outputId": "adaa8601-177c-4281-cc09-fd486828b577" }, "outputs": [ { + "output_type": "display_data", "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "1e2171b76da74feb84ce1b1e4341c15b", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ "FileUpload(value={}, accept='.json, .txt', description='Upload')" - ] + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "f77f31e709c84c48b86316dbe9d7b0c9" + } }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ @@ -561,19 +520,19 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 15, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "mASfltPUrLGI", - "outputId": "8d67aea9-f3b3-467c-ee43-6cbdc5f33d62" + "outputId": "bf78aa81-176f-4c65-d311-d128e77c1b2a" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Using variant placeholder\n" ] @@ -605,7 +564,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 16, "metadata": { "cellView": "form", "id": "ecLAU9IOrLGK" @@ -630,7 +589,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 17, "metadata": { "cellView": "form", "id": "th1JyojWrLGN" @@ -671,29 +630,31 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 300 }, "id": "J5XJ-4memIYp", - "outputId": "a6514b60-6ad8-4bf0-849d-46cfaaf8a294" + "outputId": "2f3940fb-a9c1-44c5-e46b-f90ed881f65e" }, "outputs": [ { + "output_type": "display_data", "data": { - "application/javascript": "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})", "text/plain": [ "" + ], + "application/javascript": [ + "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "[\n", " {\n", @@ -705,175 +666,175 @@ " ],\n", " \"logits\": [\n", " [\n", - " 0.7439557313919067,\n", - " 0.05980418622493744,\n", - " 0.024358421564102173,\n", - " 1.2682971954345703,\n", - " -0.32055193185806274,\n", - " 0.191476508975029,\n", - " 0.48838353157043457,\n", - " -1.4894952774047852,\n", - " -0.2861354947090149,\n", - " 2.8766539096832275,\n", - " 0.8954546451568604,\n", - " 0.5828602910041809,\n", - " -0.27455952763557434,\n", - " 1.636953353881836,\n", - " -0.1327229142189026,\n", - " 1.2955682277679443,\n", - " 0.6702917814254761,\n", - " -0.6201027631759644,\n", - " -0.25465258955955505,\n", - " -0.11269893497228622,\n", - " 0.5933904051780701,\n", - " 0.7011810541152954,\n", - " -0.08423371613025665,\n", - " 1.327063798904419,\n", - " -0.02551889419555664,\n", - " 0.6531369686126709,\n", - " -0.23584792017936707,\n", - " 0.06701026111841202,\n", - " -0.6870932579040527,\n", - " 0.515762209892273,\n", - " 0.5582014322280884,\n", - " 0.2519944906234741,\n", - " 0.09955058991909027,\n", - " -0.596206784248352,\n", - " 1.0137680768966675,\n", - " 0.11277520656585693,\n", - " 1.3569642305374146,\n", - " 0.08653093874454498,\n", - " -1.0626903772354126,\n", - " 0.8437974452972412,\n", - " 0.9905989170074463,\n", - " 0.5581963062286377,\n", - " -1.1692564487457275,\n", - " 0.7044106721878052,\n", - " 1.4692021608352661,\n", - " 0.48123621940612793,\n", - " -0.8125927448272705,\n", - " -0.7872622013092041,\n", - " 2.2367138862609863,\n", - " 1.0969915390014648,\n", - " -1.429244041442871,\n", - " 2.8315937519073486,\n", - " 0.004003586247563362,\n", - " 2.5654659271240234,\n", - " -0.22442318499088287\n", + " 0.5292270183563232,\n", + " -0.00635790079832077,\n", + " 0.17878465354442596,\n", + " 1.1964856386184692,\n", + " -0.1410972625017166,\n", + " 0.4245254397392273,\n", + " 0.49948519468307495,\n", + " -1.252655029296875,\n", + " -0.07002095878124237,\n", + " 2.5800626277923584,\n", + " 0.5571333169937134,\n", + " 0.2929157614707947,\n", + " -0.7204746007919312,\n", + " 1.4087975025177002,\n", + " -0.13526171445846558,\n", + " 0.4451870322227478,\n", + " 0.47679874300956726,\n", + " -0.7604540586471558,\n", + " -0.32842519879341125,\n", + " 0.174473375082016,\n", + " 0.9062246680259705,\n", + " 0.9195166826248169,\n", + " 0.30183035135269165,\n", + " 1.6597294807434082,\n", + " -0.03541536629199982,\n", + " 0.043147869408130646,\n", + " -0.33600711822509766,\n", + " -0.28499874472618103,\n", + " -0.45709776878356934,\n", + " 0.5732420086860657,\n", + " 0.301296591758728,\n", + " 0.1905842423439026,\n", + " 0.11839717626571655,\n", + " 0.010071471333503723,\n", + " 1.0923458337783813,\n", + " 0.6748439073562622,\n", + " 1.5611048936843872,\n", + " 0.04846012592315674,\n", + " -0.8394069075584412,\n", + " 0.6452361345291138,\n", + " 0.8015000820159912,\n", + " 0.3012917637825012,\n", + " -0.9944744110107422,\n", + " 0.5505945682525635,\n", + " 1.714401125907898,\n", + " 0.7703320384025574,\n", + " -0.495473712682724,\n", + " -0.6125894784927368,\n", + " 2.158444881439209,\n", + " 0.9037455320358276,\n", + " -1.3000812530517578,\n", + " 2.848412275314331,\n", + " -0.0677073672413826,\n", + " 2.9145853519439697,\n", + " -0.1981428563594818\n", " ],\n", " [\n", - " -0.08697620034217834,\n", - " 1.3156228065490723,\n", - " 0.13171598315238953,\n", - " -0.6739966869354248,\n", - " -0.370316743850708,\n", - " -0.09067602455615997,\n", - " -0.5265511274337769,\n", - " -0.05593187361955643,\n", - " -0.18329080939292908,\n", - " -0.5598616600036621,\n", - " 0.1481737196445465,\n", - " -0.9173487424850464,\n", - " 0.9922858476638794,\n", - " 0.07365792989730835,\n", - " -0.795732319355011,\n", - " -0.12752263247966766,\n", - " -0.42093929648399353,\n", - " -0.30548492074012756,\n", - " -0.5884270071983337,\n", - " -1.527877926826477,\n", - " -0.5033639073371887,\n", - " -1.4557197093963623,\n", - " -0.307053804397583,\n", - " -0.9644832611083984,\n", - " 0.27372103929519653,\n", - " 0.32574689388275146,\n", - " 0.7832091450691223,\n", - " 0.538183867931366,\n", - " -0.25327128171920776,\n", - " 0.27871063351631165,\n", - " 0.748062014579773,\n", - " 0.00212039053440094,\n", - " -0.7900306582450867,\n", - " 0.21318531036376953,\n", - " -0.7907015681266785,\n", - " -0.4088272154331207,\n", - " -0.7049537897109985,\n", - " -0.06814368069171906,\n", - " -0.06530238687992096,\n", - " -0.8700871467590332,\n", - " -0.8985331654548645,\n", - " 0.7480582594871521,\n", - " -0.8626811504364014,\n", - " -0.7626336216926575,\n", - " 0.06568996608257294,\n", - " -0.01848423480987549,\n", - " 0.03380918502807617,\n", - " -0.32451409101486206,\n", - " 0.05743548274040222,\n", - " 0.10730474442243576,\n", - " -0.20049329102039337,\n", - " 0.0975203663110733,\n", - " -0.03245411440730095,\n", - " 0.5450597405433655,\n", - " -0.2210157811641693\n", + " -0.01722341775894165,\n", + " 1.2210073471069336,\n", + " 0.24815717339515686,\n", + " -0.7029280662536621,\n", + " -0.5088874697685242,\n", + " -0.3307756185531616,\n", + " -0.5633893013000488,\n", + " 0.028160421177744865,\n", + " -0.18122625350952148,\n", + " -0.5184474587440491,\n", + " 0.3085406720638275,\n", + " -0.940387487411499,\n", + " 0.8490463495254517,\n", + " 0.03737708926200867,\n", + " -0.608630895614624,\n", + " -0.17219318449497223,\n", + " -0.43211156129837036,\n", + " -0.14947322010993958,\n", + " -0.6647481322288513,\n", + " -1.4207477569580078,\n", + " -0.40536749362945557,\n", + " -1.3684806823730469,\n", + " -0.4631795883178711,\n", + " -0.9709943532943726,\n", + " 0.44077521562576294,\n", + " 0.47045791149139404,\n", + " 0.8034104108810425,\n", + " 0.24572360515594482,\n", + " -0.2397092878818512,\n", + " 0.177909255027771,\n", + " 0.3903772830963135,\n", + " 0.23348857462406158,\n", + " -0.9387896060943604,\n", + " 0.1962720900774002,\n", + " -0.5104262828826904,\n", + " -0.5291773080825806,\n", + " -0.8410506844520569,\n", + " 0.0023225219920277596,\n", + " -0.1816508024930954,\n", + " -0.9726844429969788,\n", + " -1.0377684831619263,\n", + " 0.3903738856315613,\n", + " -1.104882001876831,\n", + " -0.5858286619186401,\n", + " 0.18134573101997375,\n", + " -0.13541924953460693,\n", + " -0.10175728797912598,\n", + " -0.30430376529693604,\n", + " 0.04023014008998871,\n", + " 0.5344060063362122,\n", + " -0.3049039840698242,\n", + " 0.12503939867019653,\n", + " -0.0063738590106368065,\n", + " 0.5353919863700867,\n", + " -0.21872639656066895\n", " ],\n", " [\n", - " 0.7771878242492676,\n", - " 1.3114343881607056,\n", - " -0.012182354927062988,\n", - " 0.8552881479263306,\n", - " -0.7927926182746887,\n", - " -0.5721793174743652,\n", - " 0.010838627815246582,\n", - " -1.0582994222640991,\n", - " -0.23413538932800293,\n", - " 1.6550647020339966,\n", - " 0.7121488451957703,\n", - " -0.14398884773254395,\n", - " 0.4697418510913849,\n", - " 0.8055416941642761,\n", - " -0.3256339132785797,\n", - " 0.9476250410079956,\n", - " 0.5597456693649292,\n", - " -0.9523859024047852,\n", - " -0.7322959899902344,\n", - " -0.6324459910392761,\n", - " 0.3314003050327301,\n", - " -1.1419556140899658,\n", - " -0.894864559173584,\n", - " -0.344786673784256,\n", - " -0.03127695620059967,\n", - " 0.5853173732757568,\n", - " -0.12264762073755264,\n", - " 0.41519010066986084,\n", - " 0.041307512670755386,\n", - " 0.48165205121040344,\n", - " 0.8350603580474854,\n", - " -0.04630818963050842,\n", - " -0.5424583554267883,\n", - " -0.3669750988483429,\n", - " 0.7574549913406372,\n", - " -0.6029090881347656,\n", - " -0.1283474713563919,\n", - " -0.060376983135938644,\n", - " -0.643833577632904,\n", - " 0.38315483927726746,\n", - " 0.3885853588581085,\n", - " 0.8350547552108765,\n", - " -2.4018311500549316,\n", - " 0.37359121441841125,\n", - " 1.9198334217071533,\n", - " 0.8875982761383057,\n", - " -0.16969184577465057,\n", - " 0.22055387496948242,\n", - " 2.4585986137390137,\n", - " 1.2325514554977417,\n", - " -0.5369597673416138,\n", - " 1.9459927082061768,\n", - " -0.03438543528318405,\n", - " 2.015953302383423,\n", - " -0.20249487459659576\n", + " 0.9745208024978638,\n", + " 1.6411770582199097,\n", + " 0.011551842093467712,\n", + " 0.9416571855545044,\n", + " -0.34567391872406006,\n", + " -0.305616557598114,\n", + " -0.24241159856319427,\n", + " -1.0071650743484497,\n", + " -0.13596588373184204,\n", + " 1.904878854751587,\n", + " 1.0379902124404907,\n", + " -0.5258059501647949,\n", + " 0.08713588118553162,\n", + " 0.6488298773765564,\n", + " 0.043180376291275024,\n", + " 0.2960386872291565,\n", + " 0.19371595978736877,\n", + " -0.5728404521942139,\n", + " -0.6003221273422241,\n", + " -1.3684114217758179,\n", + " 0.16984377801418304,\n", + " -0.997677206993103,\n", + " -0.8820958137512207,\n", + " -0.08379369974136353,\n", + " -0.2198265939950943,\n", + " 0.7478681802749634,\n", + " -0.13289690017700195,\n", + " 0.6055126786231995,\n", + " 0.013591520488262177,\n", + " 0.552927553653717,\n", + " 1.0734628438949585,\n", + " -0.1570722758769989,\n", + " -0.6280275583267212,\n", + " -0.42706063389778137,\n", + " 0.5036394596099854,\n", + " -0.4750063717365265,\n", + " 0.2665322422981262,\n", + " -0.0416048988699913,\n", + " -0.2380569875240326,\n", + " 0.1254364252090454,\n", + " 0.25495198369026184,\n", + " 1.0734580755233765,\n", + " -1.8388532400131226,\n", + " 0.689285397529602,\n", + " 2.5169692039489746,\n", + " 0.4923449754714966,\n", + " 0.4585099518299103,\n", + " 0.5566230416297913,\n", + " 1.953762173652649,\n", + " 1.2897024154663086,\n", + " -0.6108239889144897,\n", + " 2.4234204292297363,\n", + " -0.05348635092377663,\n", + " 2.5644595623016357,\n", + " -0.22086088359355927\n", " ]\n", " ]\n", " },\n", @@ -884,61 +845,61 @@ " ],\n", " \"logits\": [\n", " [\n", - " 6.26312255859375,\n", - " -0.317566454410553,\n", - " 3.4302141666412354,\n", - " 1.4035505056381226,\n", - " 1.241213321685791,\n", - " 0.37521523237228394,\n", - " 5.061342716217041,\n", - " -1.1037918329238892,\n", - " -0.7942070364952087,\n", - " 2.8502368927001953,\n", - " -1.0051552057266235,\n", - " 1.0691003799438477,\n", - " -0.9276374578475952,\n", - " 10.052335739135742,\n", - " 2.5388412475585938,\n", - " 5.073174953460693,\n", - " 4.180245399475098,\n", - " -0.7394668459892273,\n", - " -0.624318540096283,\n", - " 0.4930281937122345,\n", - " 0.5181777477264404,\n", - " 1.98514723777771,\n", - " -0.5727043747901917,\n", - " 2.8816614151000977,\n", - " -2.3935630321502686,\n", - " -1.311666488647461,\n", - " -0.30938494205474854,\n", - " 0.4868788719177246,\n", - " 0.13409340381622314,\n", - " 0.3388042449951172,\n", - " 0.7581492066383362,\n", - " -0.970974326133728,\n", - " -0.18873749673366547,\n", - " -2.2353787422180176,\n", - " -0.9657674431800842,\n", - " -1.3321665525436401,\n", - " 1.2479448318481445,\n", - " 0.0030700089409947395,\n", - " -0.5822324752807617,\n", - " 1.5151475667953491,\n", - " 1.6513816118240356,\n", - " 0.7581412196159363,\n", - " -1.0448381900787354,\n", - " 0.831072211265564,\n", - " 0.8690347671508789,\n", - " 1.860695719718933,\n", - " 2.0122106075286865,\n", - " -0.9047555923461914,\n", - " 2.885678291320801,\n", - " -0.6415910720825195,\n", - " 0.899309515953064,\n", - " 1.5127564668655396,\n", - " -0.09488194435834885,\n", - " 0.14658042788505554,\n", - " 0.7432166934013367\n", + " 5.569112777709961,\n", + " -0.5020171403884888,\n", + " 3.355616569519043,\n", + " 1.2582664489746094,\n", + " 1.3858609199523926,\n", + " 0.3561202883720398,\n", + " 4.800301551818848,\n", + " -1.0308297872543335,\n", + " -0.7910942435264587,\n", + " 1.2529215812683105,\n", + " -1.2155834436416626,\n", + " 0.8307411074638367,\n", + " -0.12144401669502258,\n", + " 9.678494453430176,\n", + " 1.8569309711456299,\n", + " 4.882192611694336,\n", + " 3.205979824066162,\n", + " -0.4538998007774353,\n", + " -0.590088427066803,\n", + " 0.6940065622329712,\n", + " 0.5590921640396118,\n", + " 1.8643975257873535,\n", + " -0.653666615486145,\n", + " 3.05572509765625,\n", + " -2.151517391204834,\n", + " -0.8255422115325928,\n", + " -0.5450078248977661,\n", + " 0.42817264795303345,\n", + " 0.007160749286413193,\n", + " 0.11352846771478653,\n", + " 0.48807865381240845,\n", + " -1.34535551071167,\n", + " 0.22795911133289337,\n", + " -1.933388113975525,\n", + " -0.7364113926887512,\n", + " -0.9042844772338867,\n", + " 1.3124635219573975,\n", + " 0.012029402889311314,\n", + " -0.6239970326423645,\n", + " 1.390344500541687,\n", + " 1.4910836219787598,\n", + " 0.4880709648132324,\n", + " -0.35117512941360474,\n", + " 0.41036996245384216,\n", + " 0.572378933429718,\n", + " 1.5470837354660034,\n", + " 1.403868556022644,\n", + " -0.664261519908905,\n", + " 2.738084316253662,\n", + " -0.5879711508750916,\n", + " 1.0336809158325195,\n", + " 1.1961349248886108,\n", + " -0.12495376169681549,\n", + " -0.22980979084968567,\n", + " 0.038008347153663635\n", " ]\n", " ]\n", " }\n", @@ -965,7 +926,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 19, "metadata": { "cellView": "form", "id": "nYz6NRB_rLGP" @@ -1002,10 +963,98 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "038f471ab24244d4ab4ec1a8b523882a": { + "0e89a61715a2405795e9204d487e16a7": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_706504f4e2b44623b06d81e4bfb9fec6", + "IPY_MODEL_6139b052d48b4b8a88bf1d0cfbee89d1", + "IPY_MODEL_cb8a74409964470399e759c9c373c1fb" + ], + "layout": "IPY_MODEL_1127b0a462414b60937c6f38b1adee12" + } + }, + "706504f4e2b44623b06d81e4bfb9fec6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fc53173bf32d4afabfdf9ee50cb3b00a", + "placeholder": "​", + "style": "IPY_MODEL_eb4407c45c0e4ac9b0fed9b2e0c56ff9", + "value": "config.json: 100%" + } + }, + "6139b052d48b4b8a88bf1d0cfbee89d1": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b31c4d8d76224754846690925ecf8910", + "max": 269, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_554bd3d19ad24ab79e011fe89c768793", + "value": 269 + } + }, + "cb8a74409964470399e759c9c373c1fb": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b292e0907116481f8a67236d5fff4023", + "placeholder": "​", + "style": "IPY_MODEL_948b99490be74d4483ce432455905bda", + "value": " 269/269 [00:00<00:00, 6.48kB/s]" + } + }, + "1127b0a462414b60937c6f38b1adee12": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1032,7 +1081,7 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": "100px", + "height": null, "justify_content": null, "justify_items": null, "left": null, @@ -1051,29 +1100,13 @@ "right": null, "top": null, "visibility": null, - "width": "500px" - } - }, - "04c99f8d2faf49928fb1e7cbd88e5f8a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ButtonStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" + "width": null } }, - "0896776aeeaa4917b51cf946fea7663a": { + "fc53173bf32d4afabfdf9ee50cb3b00a": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1122,10 +1155,10 @@ "width": null } }, - "10fb8e7ac03a4b0a9a13774ccba7eea4": { + "eb4407c45c0e4ac9b0fed9b2e0c56ff9": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1134,62 +1167,13 @@ "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "description_width": "initial" - } - }, - "16b23742cc57451685c6d879074fa927": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_8ed04e43e31741ad90b17f4d4a99fabd", - "placeholder": "​", - "style": "IPY_MODEL_d530a1e92cab4d41bc9db878d456f950", - "value": " 282/282 [00:00<00:00, 15.9kB/s]" - } - }, - "1e2171b76da74feb84ce1b1e4341c15b": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FileUploadModel", - "state": { - "_counter": 0, - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FileUploadModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "FileUploadView", - "accept": ".json, .txt", - "button_style": "", - "data": [], - "description": "Upload", - "description_tooltip": null, - "disabled": false, - "error": "", - "icon": "upload", - "layout": "IPY_MODEL_d1a941b70bb541a88eb4cabe38477bdc", - "metadata": [], - "multiple": false, - "style": "IPY_MODEL_04c99f8d2faf49928fb1e7cbd88e5f8a" + "description_width": "" } }, - "28e61c03f160467e8de45ce752620e13": { + "b31c4d8d76224754846690925ecf8910": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1238,112 +1222,26 @@ "width": null } }, - "4514938ed3f84b38af2d31106559e99e": { + "554bd3d19ad24ab79e011fe89c768793": { "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", - "model_name": "TextareaModel", "state": { - "_dom_classes": [ - "variant_text_area" - ], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "TextareaModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "TextareaView", - "continuous_update": true, - "description": "Variant String:", - "description_tooltip": null, - "disabled": false, - "layout": "IPY_MODEL_038f471ab24244d4ab4ec1a8b523882a", - "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", - "rows": null, - "style": "IPY_MODEL_10fb8e7ac03a4b0a9a13774ccba7eea4", - "value": "" - } - }, - "4abd40e6c94648658e1187064b778a7c": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fb6cd2c0c96b4d51917eb458cf8acc97", - "max": 99960, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_84e0849ad71b4c6b95daf28317d8fbb8", - "value": 99960 - } - }, - "53afbb49039148a8a94e3f108fc6b52a": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "55d27c64b1dd44b8867abc6afad050b6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ButtonStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" - } - }, - "56e0917ad5ca44db84fb15e1d44db0da": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0896776aeeaa4917b51cf946fea7663a", - "placeholder": "​", - "style": "IPY_MODEL_d2ef61286bc44c8eb48277bc29730524", - "value": " 100k/100k [00:00<00:00, 4.45MB/s]" - } - }, - "7077f04cbcfb4dd5a44dc14d37381eaa": { + "b292e0907116481f8a67236d5fff4023": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1392,101 +1290,113 @@ "width": null } }, - "738f5ce4d5624866853a083c64061c17": { + "948b99490be74d4483ce432455905bda": { "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_de2b5bbb9de448f697c3ab63f657c269", - "max": 282, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_dfa18e57365a43ee82560b0914e71ec4", - "value": 282 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "7ad2ca1b07674e4292b04f441660be0e": { + "9a4fa89166dc4ed9ba241082e0b295d0": { "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", "model_module_version": "1.5.0", - "model_name": "HTMLModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_db6cde19ca394758abfbc4b9267fbe03", - "placeholder": "​", - "style": "IPY_MODEL_871af3cc19e1489e85834c0c20ea281d", - "value": "model.safetensors: 100%" + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e89279b489fc4dcaa507ff5b8e67d890", + "IPY_MODEL_5268bf3171724c6aabba1a5e491120d0", + "IPY_MODEL_174d3daccf6542128f9e665d225da25f" + ], + "layout": "IPY_MODEL_49c094a124f6497f81e8d99d5f539c3e" } }, - "7ee1cbd016db43fdaceaaa9461dc8c10": { + "e89279b489fc4dcaa507ff5b8e67d890": { "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aceb1c83343f42f5ba327ea0181f54ba", + "placeholder": "​", + "style": "IPY_MODEL_3f8c6dc919de4ca79ac2d5bb4cac2d4f", + "value": "huggingface_wrapper.py: 100%" } }, - "84e0849ad71b4c6b95daf28317d8fbb8": { + "5268bf3171724c6aabba1a5e491120d0": { "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "FloatProgressModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_279615cb9a9f4d0a939e915aadb1390b", + "max": 95901, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_706b2fd4323d42129ef68cf138535fe8", + "value": 95901 } }, - "871af3cc19e1489e85834c0c20ea281d": { + "174d3daccf6542128f9e665d225da25f": { "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_26ba5323b65441d5ae3bca32edeaeb6b", + "placeholder": "​", + "style": "IPY_MODEL_eb142d0f070c47a19b80d327c79929db", + "value": " 95.9k/95.9k [00:00<00:00, 1.08MB/s]" } }, - "8ed04e43e31741ad90b17f4d4a99fabd": { + "49c094a124f6497f81e8d99d5f539c3e": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1535,32 +1445,10 @@ "width": null } }, - "9675fa6ffbc24956b73f5678f1b1378e": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_ce1b1efe8def42468305dc4aa9db46b7", - "IPY_MODEL_738f5ce4d5624866853a083c64061c17", - "IPY_MODEL_16b23742cc57451685c6d879074fa927" - ], - "layout": "IPY_MODEL_d309692dd41d4ed39761a997e384ab9b" - } - }, - "9c81c4f4b09f49e3aff7c81d34dc6fa2": { + "aceb1c83343f42f5ba327ea0181f54ba": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1609,10 +1497,25 @@ "width": null } }, - "a9983b7631014b1fa0f894e26dfa6baf": { + "3f8c6dc919de4ca79ac2d5bb4cac2d4f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "279615cb9a9f4d0a939e915aadb1390b": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1661,34 +1564,26 @@ "width": null } }, - "b0e5e2207ce54861b47d7b593f1eb884": { + "706b2fd4323d42129ef68cf138535fe8": { "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", + "_model_name": "ProgressStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_9c81c4f4b09f49e3aff7c81d34dc6fa2", - "max": 176, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_c239c3db91514be3aa4c84568f44d12d", - "value": 176 + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" } }, - "b4771f2133ea478f883c72515a956e86": { + "26ba5323b65441d5ae3bca32edeaeb6b": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1737,38 +1632,25 @@ "width": null } }, - "bda2b5a3958341afac697a9453d490ea": { + "eb142d0f070c47a19b80d327c79929db": { "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", - "model_name": "FileUploadModel", "state": { - "_counter": 0, - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FileUploadModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "FileUploadView", - "accept": ".pdb", - "button_style": "", - "data": [], - "description": "Upload", - "description_tooltip": null, - "disabled": false, - "error": "", - "icon": "upload", - "layout": "IPY_MODEL_b4771f2133ea478f883c72515a956e86", - "metadata": [], - "multiple": false, - "style": "IPY_MODEL_55d27c64b1dd44b8867abc6afad050b6" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "bfe3b4b533f84e48a2b820cbfce9dcf2": { + "3db12ffb0cc64e47a9445ed6f30ad4a7": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "HBoxModel", + "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -1780,17 +1662,83 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_7ad2ca1b07674e4292b04f441660be0e", - "IPY_MODEL_b0e5e2207ce54861b47d7b593f1eb884", - "IPY_MODEL_f91362bcfd624785a438371699a724b3" + "IPY_MODEL_c064486920084853839ba97bbf7adcef", + "IPY_MODEL_c48bf3a44113463e9a2ce990ca58fd89", + "IPY_MODEL_49ed05570a474155ac1cc9c920956277" ], - "layout": "IPY_MODEL_c05a432373d74c87ae7348e89e11c162" + "layout": "IPY_MODEL_b8de008d9ea8492d89b4220190f341df" } }, - "c05a432373d74c87ae7348e89e11c162": { + "c064486920084853839ba97bbf7adcef": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_561825fd86a24139b76b0714fcf4ee07", + "placeholder": "​", + "style": "IPY_MODEL_e243c6dbff6f462ba643e44ad05d6199", + "value": "model.safetensors: 100%" + } + }, + "c48bf3a44113463e9a2ce990ca58fd89": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_dca0f426047a4fc69905113bfab76ddf", + "max": 176, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_61459277623143eeae90e152128d8e41", + "value": 176 + } + }, + "49ed05570a474155ac1cc9c920956277": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0cff14529ed44602992665ab2769cc3a", + "placeholder": "​", + "style": "IPY_MODEL_840350d162c54b248ad178915821d3e2", + "value": " 176/176 [00:00<00:00, 4.07kB/s]" + } + }, + "b8de008d9ea8492d89b4220190f341df": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1839,47 +1787,10 @@ "width": null } }, - "c239c3db91514be3aa4c84568f44d12d": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "ce1b1efe8def42468305dc4aa9db46b7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_a9983b7631014b1fa0f894e26dfa6baf", - "placeholder": "​", - "style": "IPY_MODEL_7ee1cbd016db43fdaceaaa9461dc8c10", - "value": "config.json: 100%" - } - }, - "d1a941b70bb541a88eb4cabe38477bdc": { + "561825fd86a24139b76b0714fcf4ee07": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1928,10 +1839,10 @@ "width": null } }, - "d2ef61286bc44c8eb48277bc29730524": { + "e243c6dbff6f462ba643e44ad05d6199": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1943,10 +1854,10 @@ "description_width": "" } }, - "d309692dd41d4ed39761a997e384ab9b": { + "dca0f426047a4fc69905113bfab76ddf": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1995,46 +1906,26 @@ "width": null } }, - "d530a1e92cab4d41bc9db878d456f950": { + "61459277623143eeae90e152128d8e41": { "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "d8cda8df783d41ca951fb0e983bfae23": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_7077f04cbcfb4dd5a44dc14d37381eaa", - "placeholder": "​", - "style": "IPY_MODEL_53afbb49039148a8a94e3f108fc6b52a", - "value": "huggingface_wrapper.py: 100%" - } - }, - "db6cde19ca394758abfbc4b9267fbe03": { + "0cff14529ed44602992665ab2769cc3a": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2083,10 +1974,53 @@ "width": null } }, - "de2b5bbb9de448f697c3ab63f657c269": { + "840350d162c54b248ad178915821d3e2": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b85b44e3b4b843f0946831f3c483f8d6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FileUploadModel", + "model_module_version": "1.5.0", + "state": { + "_counter": 0, + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FileUploadModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "FileUploadView", + "accept": ".pdb", + "button_style": "", + "data": [], + "description": "Upload", + "description_tooltip": null, + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_7a62aa6956264d2394634f14579e963f", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_1da4309d84904fd0a519a0ac28a89acc" + } + }, + "7a62aa6956264d2394634f14579e963f": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2135,48 +2069,52 @@ "width": null } }, - "df8289201f734f90ab0d23b39bce8ae2": { + "1da4309d84904fd0a519a0ac28a89acc": { "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", "model_module_version": "1.5.0", - "model_name": "HBoxModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "ButtonStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_d8cda8df783d41ca951fb0e983bfae23", - "IPY_MODEL_4abd40e6c94648658e1187064b778a7c", - "IPY_MODEL_56e0917ad5ca44db84fb15e1d44db0da" - ], - "layout": "IPY_MODEL_e206c3c532824633809e3cffd58b9a1c" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" } }, - "dfa18e57365a43ee82560b0914e71ec4": { + "652003f6d3774d4f96dccccc6531d9c2": { "model_module": "@jupyter-widgets/controls", + "model_name": "TextareaModel", "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", "state": { + "_dom_classes": [ + "variant_text_area" + ], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "TextareaModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "TextareaView", + "continuous_update": true, + "description": "Variant String:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_c505a59405964bffbee1f02db2fe2227", + "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", + "rows": null, + "style": "IPY_MODEL_e955bf593f2f451c9a986b0683d35d30", + "value": "" } }, - "e206c3c532824633809e3cffd58b9a1c": { + "c505a59405964bffbee1f02db2fe2227": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2203,7 +2141,7 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": null, + "height": "100px", "justify_content": null, "justify_items": null, "left": null, @@ -2222,13 +2160,13 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "500px" } }, - "e908a67f37334277a65ab3b3b4f861da": { + "e955bf593f2f451c9a986b0683d35d30": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -2237,34 +2175,41 @@ "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "description_width": "" + "description_width": "initial" } }, - "f91362bcfd624785a438371699a724b3": { + "f77f31e709c84c48b86316dbe9d7b0c9": { "model_module": "@jupyter-widgets/controls", + "model_name": "FileUploadModel", "model_module_version": "1.5.0", - "model_name": "HTMLModel", "state": { + "_counter": 0, "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "FileUploadModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", + "_view_name": "FileUploadView", + "accept": ".json, .txt", + "button_style": "", + "data": [], + "description": "Upload", "description_tooltip": null, - "layout": "IPY_MODEL_28e61c03f160467e8de45ce752620e13", - "placeholder": "​", - "style": "IPY_MODEL_e908a67f37334277a65ab3b3b4f861da", - "value": " 176/176 [00:00<00:00, 10.3kB/s]" + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_bd9755e9b09148d480b2d4604aa9ff16", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_3171d7d717ba4baba7ac948a4fb60529" } }, - "fb6cd2c0c96b4d51917eb458cf8acc97": { + "bd9755e9b09148d480b2d4604aa9ff16": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2312,10 +2257,26 @@ "visibility": null, "width": null } + }, + "3171d7d717ba4baba7ac948a4fb60529": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } } } } }, "nbformat": 4, "nbformat_minor": 0 -} +} \ No newline at end of file From 95a474f3ec969eeeb5f9e99c3048ca614017e4d6 Mon Sep 17 00:00:00 2001 From: John Peters Date: Tue, 27 Aug 2024 13:34:44 -0500 Subject: [PATCH 08/10] "Removed login from colab notebook" --- notebooks/colab_predicting.ipynb | 965 +++++++++++++++---------------- 1 file changed, 479 insertions(+), 486 deletions(-) diff --git a/notebooks/colab_predicting.ipynb b/notebooks/colab_predicting.ipynb index 01becde..203a60e 100644 --- a/notebooks/colab_predicting.ipynb +++ b/notebooks/colab_predicting.ipynb @@ -39,8 +39,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "--2024-08-23 20:50:43-- https://raw.githubusercontent.com/gitter-lab/metl-pretrained/main/pdbs/2qmt_p.pdb\n", "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n", @@ -76,7 +76,6 @@ "from IPython.display import clear_output, HTML, display\n", "import pandas as pd\n", "import torch\n", - "from huggingface_hub import login\n", "import io\n", "import json\n", "import biopandas\n", @@ -162,8 +161,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n", "Token is valid (permission: write).\n", @@ -172,54 +171,50 @@ ] }, { - "output_type": "display_data", "data": { - "text/plain": [ - "config.json: 0%| | 0.00/269 [00:00" - ], "text/html": [ "\n", "\n" + ], + "text/plain": [ + "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Textarea(value='', description='Variant String:', layout=Layout(height='100px', width='500px'), placeholder='[…" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "652003f6d3774d4f96dccccc6531d9c2", "version_major": 2, - "version_minor": 0, - "model_id": "652003f6d3774d4f96dccccc6531d9c2" - } + "version_minor": 0 + }, + "text/plain": [ + "Textarea(value='', description='Variant String:', layout=Layout(height='100px', width='500px'), placeholder='[…" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -482,18 +477,18 @@ }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "FileUpload(value={}, accept='.json, .txt', description='Upload')" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "f77f31e709c84c48b86316dbe9d7b0c9", "version_major": 2, - "version_minor": 0, - "model_id": "f77f31e709c84c48b86316dbe9d7b0c9" - } + "version_minor": 0 + }, + "text/plain": [ + "FileUpload(value={}, accept='.json, .txt', description='Upload')" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -531,8 +526,8 @@ }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Using variant placeholder\n" ] @@ -641,20 +636,18 @@ }, "outputs": [ { - "output_type": "display_data", "data": { + "application/javascript": "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})", "text/plain": [ "" - ], - "application/javascript": [ - "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "[\n", " {\n", @@ -963,98 +956,10 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "0e89a61715a2405795e9204d487e16a7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_706504f4e2b44623b06d81e4bfb9fec6", - "IPY_MODEL_6139b052d48b4b8a88bf1d0cfbee89d1", - "IPY_MODEL_cb8a74409964470399e759c9c373c1fb" - ], - "layout": "IPY_MODEL_1127b0a462414b60937c6f38b1adee12" - } - }, - "706504f4e2b44623b06d81e4bfb9fec6": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fc53173bf32d4afabfdf9ee50cb3b00a", - "placeholder": "​", - "style": "IPY_MODEL_eb4407c45c0e4ac9b0fed9b2e0c56ff9", - "value": "config.json: 100%" - } - }, - "6139b052d48b4b8a88bf1d0cfbee89d1": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b31c4d8d76224754846690925ecf8910", - "max": 269, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_554bd3d19ad24ab79e011fe89c768793", - "value": 269 - } - }, - "cb8a74409964470399e759c9c373c1fb": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b292e0907116481f8a67236d5fff4023", - "placeholder": "​", - "style": "IPY_MODEL_948b99490be74d4483ce432455905bda", - "value": " 269/269 [00:00<00:00, 6.48kB/s]" - } - }, - "1127b0a462414b60937c6f38b1adee12": { + "0cff14529ed44602992665ab2769cc3a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1103,10 +1008,32 @@ "width": null } }, - "fc53173bf32d4afabfdf9ee50cb3b00a": { + "0e89a61715a2405795e9204d487e16a7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_706504f4e2b44623b06d81e4bfb9fec6", + "IPY_MODEL_6139b052d48b4b8a88bf1d0cfbee89d1", + "IPY_MODEL_cb8a74409964470399e759c9c373c1fb" + ], + "layout": "IPY_MODEL_1127b0a462414b60937c6f38b1adee12" + } + }, + "1127b0a462414b60937c6f38b1adee12": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1155,25 +1082,47 @@ "width": null } }, - "eb4407c45c0e4ac9b0fed9b2e0c56ff9": { + "174d3daccf6542128f9e665d225da25f": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_26ba5323b65441d5ae3bca32edeaeb6b", + "placeholder": "​", + "style": "IPY_MODEL_eb142d0f070c47a19b80d327c79929db", + "value": " 95.9k/95.9k [00:00<00:00, 1.08MB/s]" + } + }, + "1da4309d84904fd0a519a0ac28a89acc": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ButtonStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "description_width": "" + "button_color": null, + "font_weight": "" } }, - "b31c4d8d76224754846690925ecf8910": { + "26ba5323b65441d5ae3bca32edeaeb6b": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1222,26 +1171,10 @@ "width": null } }, - "554bd3d19ad24ab79e011fe89c768793": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "b292e0907116481f8a67236d5fff4023": { + "279615cb9a9f4d0a939e915aadb1390b": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1290,25 +1223,26 @@ "width": null } }, - "948b99490be74d4483ce432455905bda": { + "3171d7d717ba4baba7ac948a4fb60529": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "ButtonStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "ButtonStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "description_width": "" + "button_color": null, + "font_weight": "" } }, - "9a4fa89166dc4ed9ba241082e0b295d0": { + "3db12ffb0cc64e47a9445ed6f30ad4a7": { "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", @@ -1320,83 +1254,32 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e89279b489fc4dcaa507ff5b8e67d890", - "IPY_MODEL_5268bf3171724c6aabba1a5e491120d0", - "IPY_MODEL_174d3daccf6542128f9e665d225da25f" + "IPY_MODEL_c064486920084853839ba97bbf7adcef", + "IPY_MODEL_c48bf3a44113463e9a2ce990ca58fd89", + "IPY_MODEL_49ed05570a474155ac1cc9c920956277" ], - "layout": "IPY_MODEL_49c094a124f6497f81e8d99d5f539c3e" + "layout": "IPY_MODEL_b8de008d9ea8492d89b4220190f341df" } }, - "e89279b489fc4dcaa507ff5b8e67d890": { + "3f8c6dc919de4ca79ac2d5bb4cac2d4f": { "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_aceb1c83343f42f5ba327ea0181f54ba", - "placeholder": "​", - "style": "IPY_MODEL_3f8c6dc919de4ca79ac2d5bb4cac2d4f", - "value": "huggingface_wrapper.py: 100%" - } - }, - "5268bf3171724c6aabba1a5e491120d0": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_279615cb9a9f4d0a939e915aadb1390b", - "max": 95901, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_706b2fd4323d42129ef68cf138535fe8", - "value": 95901 - } - }, - "174d3daccf6542128f9e665d225da25f": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_26ba5323b65441d5ae3bca32edeaeb6b", - "placeholder": "​", - "style": "IPY_MODEL_eb142d0f070c47a19b80d327c79929db", - "value": " 95.9k/95.9k [00:00<00:00, 1.08MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, "49c094a124f6497f81e8d99d5f539c3e": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1445,10 +1328,71 @@ "width": null } }, - "aceb1c83343f42f5ba327ea0181f54ba": { + "49ed05570a474155ac1cc9c920956277": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_0cff14529ed44602992665ab2769cc3a", + "placeholder": "​", + "style": "IPY_MODEL_840350d162c54b248ad178915821d3e2", + "value": " 176/176 [00:00<00:00, 4.07kB/s]" + } + }, + "5268bf3171724c6aabba1a5e491120d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_279615cb9a9f4d0a939e915aadb1390b", + "max": 95901, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_706b2fd4323d42129ef68cf138535fe8", + "value": 95901 + } + }, + "554bd3d19ad24ab79e011fe89c768793": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "561825fd86a24139b76b0714fcf4ee07": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1497,25 +1441,113 @@ "width": null } }, - "3f8c6dc919de4ca79ac2d5bb4cac2d4f": { + "6139b052d48b4b8a88bf1d0cfbee89d1": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b31c4d8d76224754846690925ecf8910", + "max": 269, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_554bd3d19ad24ab79e011fe89c768793", + "value": 269 + } + }, + "61459277623143eeae90e152128d8e41": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", + "bar_color": null, "description_width": "" } }, - "279615cb9a9f4d0a939e915aadb1390b": { + "652003f6d3774d4f96dccccc6531d9c2": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "TextareaModel", + "state": { + "_dom_classes": [ + "variant_text_area" + ], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "TextareaModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "TextareaView", + "continuous_update": true, + "description": "Variant String:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_c505a59405964bffbee1f02db2fe2227", + "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", + "rows": null, + "style": "IPY_MODEL_e955bf593f2f451c9a986b0683d35d30", + "value": "" + } + }, + "706504f4e2b44623b06d81e4bfb9fec6": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_fc53173bf32d4afabfdf9ee50cb3b00a", + "placeholder": "​", + "style": "IPY_MODEL_eb4407c45c0e4ac9b0fed9b2e0c56ff9", + "value": "config.json: 100%" + } + }, + "706b2fd4323d42129ef68cf138535fe8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "7a62aa6956264d2394634f14579e963f": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1564,26 +1596,62 @@ "width": null } }, - "706b2fd4323d42129ef68cf138535fe8": { + "840350d162c54b248ad178915821d3e2": { "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "bar_color": null, "description_width": "" } }, - "26ba5323b65441d5ae3bca32edeaeb6b": { + "948b99490be74d4483ce432455905bda": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "9a4fa89166dc4ed9ba241082e0b295d0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_e89279b489fc4dcaa507ff5b8e67d890", + "IPY_MODEL_5268bf3171724c6aabba1a5e491120d0", + "IPY_MODEL_174d3daccf6542128f9e665d225da25f" + ], + "layout": "IPY_MODEL_49c094a124f6497f81e8d99d5f539c3e" + } + }, + "aceb1c83343f42f5ba327ea0181f54ba": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1628,117 +1696,14 @@ "padding": null, "right": null, "top": null, - "visibility": null, - "width": null - } - }, - "eb142d0f070c47a19b80d327c79929db": { - "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "3db12ffb0cc64e47a9445ed6f30ad4a7": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HBoxModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c064486920084853839ba97bbf7adcef", - "IPY_MODEL_c48bf3a44113463e9a2ce990ca58fd89", - "IPY_MODEL_49ed05570a474155ac1cc9c920956277" - ], - "layout": "IPY_MODEL_b8de008d9ea8492d89b4220190f341df" - } - }, - "c064486920084853839ba97bbf7adcef": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_561825fd86a24139b76b0714fcf4ee07", - "placeholder": "​", - "style": "IPY_MODEL_e243c6dbff6f462ba643e44ad05d6199", - "value": "model.safetensors: 100%" - } - }, - "c48bf3a44113463e9a2ce990ca58fd89": { - "model_module": "@jupyter-widgets/controls", - "model_name": "FloatProgressModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dca0f426047a4fc69905113bfab76ddf", - "max": 176, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_61459277623143eeae90e152128d8e41", - "value": 176 - } - }, - "49ed05570a474155ac1cc9c920956277": { - "model_module": "@jupyter-widgets/controls", - "model_name": "HTMLModel", - "model_module_version": "1.5.0", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0cff14529ed44602992665ab2769cc3a", - "placeholder": "​", - "style": "IPY_MODEL_840350d162c54b248ad178915821d3e2", - "value": " 176/176 [00:00<00:00, 4.07kB/s]" + "visibility": null, + "width": null } }, - "b8de008d9ea8492d89b4220190f341df": { + "b292e0907116481f8a67236d5fff4023": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1787,10 +1752,10 @@ "width": null } }, - "561825fd86a24139b76b0714fcf4ee07": { + "b31c4d8d76224754846690925ecf8910": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1839,25 +1804,38 @@ "width": null } }, - "e243c6dbff6f462ba643e44ad05d6199": { + "b85b44e3b4b843f0946831f3c483f8d6": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "FileUploadModel", "state": { + "_counter": 0, + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "FileUploadModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "FileUploadView", + "accept": ".pdb", + "button_style": "", + "data": [], + "description": "Upload", + "description_tooltip": null, + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_7a62aa6956264d2394634f14579e963f", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_1da4309d84904fd0a519a0ac28a89acc" } }, - "dca0f426047a4fc69905113bfab76ddf": { + "b8de008d9ea8492d89b4220190f341df": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1906,26 +1884,10 @@ "width": null } }, - "61459277623143eeae90e152128d8e41": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ProgressStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "0cff14529ed44602992665ab2769cc3a": { + "bd9755e9b09148d480b2d4604aa9ff16": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1974,53 +1936,55 @@ "width": null } }, - "840350d162c54b248ad178915821d3e2": { + "c064486920084853839ba97bbf7adcef": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_561825fd86a24139b76b0714fcf4ee07", + "placeholder": "​", + "style": "IPY_MODEL_e243c6dbff6f462ba643e44ad05d6199", + "value": "model.safetensors: 100%" } }, - "b85b44e3b4b843f0946831f3c483f8d6": { + "c48bf3a44113463e9a2ce990ca58fd89": { "model_module": "@jupyter-widgets/controls", - "model_name": "FileUploadModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_counter": 0, "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FileUploadModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "FileUploadView", - "accept": ".pdb", - "button_style": "", - "data": [], - "description": "Upload", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", "description_tooltip": null, - "disabled": false, - "error": "", - "icon": "upload", - "layout": "IPY_MODEL_7a62aa6956264d2394634f14579e963f", - "metadata": [], - "multiple": false, - "style": "IPY_MODEL_1da4309d84904fd0a519a0ac28a89acc" + "layout": "IPY_MODEL_dca0f426047a4fc69905113bfab76ddf", + "max": 176, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_61459277623143eeae90e152128d8e41", + "value": 176 } }, - "7a62aa6956264d2394634f14579e963f": { + "c505a59405964bffbee1f02db2fe2227": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2047,7 +2011,7 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": null, + "height": "100px", "justify_content": null, "justify_items": null, "left": null, @@ -2066,55 +2030,34 @@ "right": null, "top": null, "visibility": null, - "width": null - } - }, - "1da4309d84904fd0a519a0ac28a89acc": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ButtonStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" + "width": "500px" } }, - "652003f6d3774d4f96dccccc6531d9c2": { + "cb8a74409964470399e759c9c373c1fb": { "model_module": "@jupyter-widgets/controls", - "model_name": "TextareaModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_dom_classes": [ - "variant_text_area" - ], + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "TextareaModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "TextareaView", - "continuous_update": true, - "description": "Variant String:", + "_view_name": "HTMLView", + "description": "", "description_tooltip": null, - "disabled": false, - "layout": "IPY_MODEL_c505a59405964bffbee1f02db2fe2227", - "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", - "rows": null, - "style": "IPY_MODEL_e955bf593f2f451c9a986b0683d35d30", - "value": "" + "layout": "IPY_MODEL_b292e0907116481f8a67236d5fff4023", + "placeholder": "​", + "style": "IPY_MODEL_948b99490be74d4483ce432455905bda", + "value": " 269/269 [00:00<00:00, 6.48kB/s]" } }, - "c505a59405964bffbee1f02db2fe2227": { + "dca0f426047a4fc69905113bfab76ddf": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2141,7 +2084,7 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": "100px", + "height": null, "justify_content": null, "justify_items": null, "left": null, @@ -2160,13 +2103,49 @@ "right": null, "top": null, "visibility": null, - "width": "500px" + "width": null } }, - "e955bf593f2f451c9a986b0683d35d30": { + "e243c6dbff6f462ba643e44ad05d6199": { "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "e89279b489fc4dcaa507ff5b8e67d890": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_aceb1c83343f42f5ba327ea0181f54ba", + "placeholder": "​", + "style": "IPY_MODEL_3f8c6dc919de4ca79ac2d5bb4cac2d4f", + "value": "huggingface_wrapper.py: 100%" + } + }, + "e955bf593f2f451c9a986b0683d35d30": { + "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -2178,10 +2157,40 @@ "description_width": "initial" } }, + "eb142d0f070c47a19b80d327c79929db": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "eb4407c45c0e4ac9b0fed9b2e0c56ff9": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, "f77f31e709c84c48b86316dbe9d7b0c9": { "model_module": "@jupyter-widgets/controls", - "model_name": "FileUploadModel", "model_module_version": "1.5.0", + "model_name": "FileUploadModel", "state": { "_counter": 0, "_dom_classes": [], @@ -2206,10 +2215,10 @@ "style": "IPY_MODEL_3171d7d717ba4baba7ac948a4fb60529" } }, - "bd9755e9b09148d480b2d4604aa9ff16": { + "fc53173bf32d4afabfdf9ee50cb3b00a": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -2257,26 +2266,10 @@ "visibility": null, "width": null } - }, - "3171d7d717ba4baba7ac948a4fb60529": { - "model_module": "@jupyter-widgets/controls", - "model_name": "ButtonStyleModel", - "model_module_version": "1.5.0", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" - } } } } }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +} From 35e9ec9e2e011f8d8fc433179f3f885c4fa6f202 Mon Sep 17 00:00:00 2001 From: John Peters Date: Tue, 27 Aug 2024 13:38:14 -0500 Subject: [PATCH 09/10] "Removed login from colab notebook" --- notebooks/colab_predicting.ipynb | 1904 ++++++------------------------ 1 file changed, 390 insertions(+), 1514 deletions(-) diff --git a/notebooks/colab_predicting.ipynb b/notebooks/colab_predicting.ipynb index 203a60e..8141ebe 100644 --- a/notebooks/colab_predicting.ipynb +++ b/notebooks/colab_predicting.ipynb @@ -15,7 +15,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 15, "metadata": { "cellView": "form", "id": "WkNKKIqXr4OU" @@ -28,30 +28,30 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 16, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "tP_HrR5YSiqk", - "outputId": "c4f0a814-5daf-45b1-8d7f-cb7fbbbb3142" + "outputId": "70aa2f54-639d-4406-a0ce-6557caaa17d2" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ - "--2024-08-23 20:50:43-- https://raw.githubusercontent.com/gitter-lab/metl-pretrained/main/pdbs/2qmt_p.pdb\n", + "--2024-08-27 18:37:23-- https://raw.githubusercontent.com/gitter-lab/metl-pretrained/main/pdbs/2qmt_p.pdb\n", "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n", "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 78764 (77K) [text/plain]\n", "Saving to: ‘2qmt_p.pdb’\n", "\n", - "\r2qmt_p.pdb 0%[ ] 0 --.-KB/s \r2qmt_p.pdb 100%[===================>] 76.92K --.-KB/s in 0.009s \n", + "\r2qmt_p.pdb 0%[ ] 0 --.-KB/s \r2qmt_p.pdb 100%[===================>] 76.92K --.-KB/s in 0.01s \n", "\n", - "2024-08-23 20:50:43 (8.73 MB/s) - ‘2qmt_p.pdb’ saved [78764/78764]\n", + "2024-08-27 18:37:23 (6.32 MB/s) - ‘2qmt_p.pdb’ saved [78764/78764]\n", "\n" ] } @@ -63,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 17, "metadata": { "cellView": "form", "id": "mpjvGjzArLF1" @@ -114,105 +114,12 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 18, "metadata": { "cellView": "form", - "colab": { - "base_uri": "https://localhost:8080/", - "height": 202, - "referenced_widgets": [ - "0e89a61715a2405795e9204d487e16a7", - "706504f4e2b44623b06d81e4bfb9fec6", - "6139b052d48b4b8a88bf1d0cfbee89d1", - "cb8a74409964470399e759c9c373c1fb", - "1127b0a462414b60937c6f38b1adee12", - "fc53173bf32d4afabfdf9ee50cb3b00a", - "eb4407c45c0e4ac9b0fed9b2e0c56ff9", - "b31c4d8d76224754846690925ecf8910", - "554bd3d19ad24ab79e011fe89c768793", - "b292e0907116481f8a67236d5fff4023", - "948b99490be74d4483ce432455905bda", - "9a4fa89166dc4ed9ba241082e0b295d0", - "e89279b489fc4dcaa507ff5b8e67d890", - "5268bf3171724c6aabba1a5e491120d0", - "174d3daccf6542128f9e665d225da25f", - "49c094a124f6497f81e8d99d5f539c3e", - "aceb1c83343f42f5ba327ea0181f54ba", - "3f8c6dc919de4ca79ac2d5bb4cac2d4f", - "279615cb9a9f4d0a939e915aadb1390b", - "706b2fd4323d42129ef68cf138535fe8", - "26ba5323b65441d5ae3bca32edeaeb6b", - "eb142d0f070c47a19b80d327c79929db", - "3db12ffb0cc64e47a9445ed6f30ad4a7", - "c064486920084853839ba97bbf7adcef", - "c48bf3a44113463e9a2ce990ca58fd89", - "49ed05570a474155ac1cc9c920956277", - "b8de008d9ea8492d89b4220190f341df", - "561825fd86a24139b76b0714fcf4ee07", - "e243c6dbff6f462ba643e44ad05d6199", - "dca0f426047a4fc69905113bfab76ddf", - "61459277623143eeae90e152128d8e41", - "0cff14529ed44602992665ab2769cc3a", - "840350d162c54b248ad178915821d3e2" - ] - }, - "id": "vIp69-KLrLF8", - "outputId": "0a5081fe-d8ae-45cb-ab38-0352ccb33fcd" + "id": "vIp69-KLrLF8" }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n", - "Token is valid (permission: write).\n", - "Your token has been saved to /root/.cache/huggingface/token\n", - "Login successful\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "0e89a61715a2405795e9204d487e16a7", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "config.json: 0%| | 0.00/269 [00:00" + ], "text/html": [ "\n", "\n" - ], - "text/plain": [ - "" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} }, { + "output_type": "display_data", "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "652003f6d3774d4f96dccccc6531d9c2", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ "Textarea(value='', description='Variant String:', layout=Layout(height='100px', width='500px'), placeholder='[…" - ] + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "2e1b8d20f17b4ef584c853fd4a99bf4b" + } }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ @@ -460,35 +360,35 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 23, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 49, "referenced_widgets": [ - "f77f31e709c84c48b86316dbe9d7b0c9", - "bd9755e9b09148d480b2d4604aa9ff16", - "3171d7d717ba4baba7ac948a4fb60529" + "18ee47ab60e047bd8881c70e1999438f", + "5ddecf2c18394ec2bda2e38999d2b1ae", + "429005aabdfa4724af48b83a45bf1868" ] }, "id": "8TLYi6orHN_8", - "outputId": "adaa8601-177c-4281-cc09-fd486828b577" + "outputId": "e9b214fa-534f-4088-df0b-49ab6d6da89f" }, "outputs": [ { + "output_type": "display_data", "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f77f31e709c84c48b86316dbe9d7b0c9", - "version_major": 2, - "version_minor": 0 - }, "text/plain": [ "FileUpload(value={}, accept='.json, .txt', description='Upload')" - ] + ], + "application/vnd.jupyter.widget-view+json": { + "version_major": 2, + "version_minor": 0, + "model_id": "18ee47ab60e047bd8881c70e1999438f" + } }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} } ], "source": [ @@ -515,19 +415,19 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 24, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "mASfltPUrLGI", - "outputId": "bf78aa81-176f-4c65-d311-d128e77c1b2a" + "outputId": "36dba643-0610-4632-d446-2df66c9bf99c" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Using variant placeholder\n" ] @@ -559,7 +459,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 25, "metadata": { "cellView": "form", "id": "ecLAU9IOrLGK" @@ -584,7 +484,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 26, "metadata": { "cellView": "form", "id": "th1JyojWrLGN" @@ -625,29 +525,31 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 27, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 300 }, "id": "J5XJ-4memIYp", - "outputId": "2f3940fb-a9c1-44c5-e46b-f90ed881f65e" + "outputId": "5e031353-3de6-4637-f0cf-94c728e9b65f" }, "outputs": [ { + "output_type": "display_data", "data": { - "application/javascript": "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})", "text/plain": [ "" + ], + "application/javascript": [ + "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})" ] }, - "metadata": {}, - "output_type": "display_data" + "metadata": {} }, { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "[\n", " {\n", @@ -659,175 +561,175 @@ " ],\n", " \"logits\": [\n", " [\n", - " 0.5292270183563232,\n", - " -0.00635790079832077,\n", - " 0.17878465354442596,\n", - " 1.1964856386184692,\n", - " -0.1410972625017166,\n", - " 0.4245254397392273,\n", - " 0.49948519468307495,\n", - " -1.252655029296875,\n", - " -0.07002095878124237,\n", - " 2.5800626277923584,\n", - " 0.5571333169937134,\n", - " 0.2929157614707947,\n", - " -0.7204746007919312,\n", - " 1.4087975025177002,\n", - " -0.13526171445846558,\n", - " 0.4451870322227478,\n", - " 0.47679874300956726,\n", - " -0.7604540586471558,\n", - " -0.32842519879341125,\n", - " 0.174473375082016,\n", - " 0.9062246680259705,\n", - " 0.9195166826248169,\n", - " 0.30183035135269165,\n", - " 1.6597294807434082,\n", - " -0.03541536629199982,\n", - " 0.043147869408130646,\n", - " -0.33600711822509766,\n", - " -0.28499874472618103,\n", - " -0.45709776878356934,\n", - " 0.5732420086860657,\n", - " 0.301296591758728,\n", - " 0.1905842423439026,\n", - " 0.11839717626571655,\n", - " 0.010071471333503723,\n", - " 1.0923458337783813,\n", - " 0.6748439073562622,\n", - " 1.5611048936843872,\n", - " 0.04846012592315674,\n", - " -0.8394069075584412,\n", - " 0.6452361345291138,\n", - " 0.8015000820159912,\n", - " 0.3012917637825012,\n", - " -0.9944744110107422,\n", - " 0.5505945682525635,\n", - " 1.714401125907898,\n", - " 0.7703320384025574,\n", - " -0.495473712682724,\n", - " -0.6125894784927368,\n", - " 2.158444881439209,\n", - " 0.9037455320358276,\n", - " -1.3000812530517578,\n", - " 2.848412275314331,\n", - " -0.0677073672413826,\n", - " 2.9145853519439697,\n", - " -0.1981428563594818\n", + " 0.6590991020202637,\n", + " -0.08049693703651428,\n", + " 0.11373624205589294,\n", + " 1.4331327676773071,\n", + " -0.003976300358772278,\n", + " 0.16853787004947662,\n", + " 0.5145285129547119,\n", + " -1.1548832654953003,\n", + " -0.20571443438529968,\n", + " 2.667442560195923,\n", + " 0.41927337646484375,\n", + " 0.7023993134498596,\n", + " -0.6217738389968872,\n", + " 1.088243007659912,\n", + " -0.2892734110355377,\n", + " 1.396775722503662,\n", + " 0.6249127388000488,\n", + " -0.8152581453323364,\n", + " -0.25194138288497925,\n", + " 0.2249372899532318,\n", + " 0.7511525750160217,\n", + " 0.9799940586090088,\n", + " 0.1690274327993393,\n", + " 1.3717353343963623,\n", + " -0.07415583729743958,\n", + " 0.8511269092559814,\n", + " -0.4129708707332611,\n", + " -0.04580826312303543,\n", + " -0.5695468187332153,\n", + " 0.4530905783176422,\n", + " 0.3971884846687317,\n", + " 0.30440178513526917,\n", + " -0.28599846363067627,\n", + " -0.4856437146663666,\n", + " 1.1446493864059448,\n", + " 0.4548720121383667,\n", + " 1.495203971862793,\n", + " 0.05855285003781319,\n", + " -1.2672133445739746,\n", + " 0.9071683883666992,\n", + " 1.0979468822479248,\n", + " 0.39718329906463623,\n", + " -1.2884514331817627,\n", + " 0.7822027206420898,\n", + " 1.424137830734253,\n", + " 0.16050660610198975,\n", + " -0.47188788652420044,\n", + " -0.3807096481323242,\n", + " 1.3630346059799194,\n", + " 0.7026631832122803,\n", + " -1.1909109354019165,\n", + " 2.3238673210144043,\n", + " -0.005734764039516449,\n", + " 2.646303653717041,\n", + " -0.1562235802412033\n", " ],\n", " [\n", - " -0.01722341775894165,\n", - " 1.2210073471069336,\n", - " 0.24815717339515686,\n", - " -0.7029280662536621,\n", - " -0.5088874697685242,\n", - " -0.3307756185531616,\n", - " -0.5633893013000488,\n", - " 0.028160421177744865,\n", - " -0.18122625350952148,\n", - " -0.5184474587440491,\n", - " 0.3085406720638275,\n", - " -0.940387487411499,\n", - " 0.8490463495254517,\n", - " 0.03737708926200867,\n", - " -0.608630895614624,\n", - " -0.17219318449497223,\n", - " -0.43211156129837036,\n", - " -0.14947322010993958,\n", - " -0.6647481322288513,\n", - " -1.4207477569580078,\n", - " -0.40536749362945557,\n", - " -1.3684806823730469,\n", - " -0.4631795883178711,\n", - " -0.9709943532943726,\n", - " 0.44077521562576294,\n", - " 0.47045791149139404,\n", - " 0.8034104108810425,\n", - " 0.24572360515594482,\n", - " -0.2397092878818512,\n", - " 0.177909255027771,\n", - " 0.3903772830963135,\n", - " 0.23348857462406158,\n", - " -0.9387896060943604,\n", - " 0.1962720900774002,\n", - " -0.5104262828826904,\n", - " -0.5291773080825806,\n", - " -0.8410506844520569,\n", - " 0.0023225219920277596,\n", - " -0.1816508024930954,\n", - " -0.9726844429969788,\n", - " -1.0377684831619263,\n", - " 0.3903738856315613,\n", - " -1.104882001876831,\n", - " -0.5858286619186401,\n", - " 0.18134573101997375,\n", - " -0.13541924953460693,\n", - " -0.10175728797912598,\n", - " -0.30430376529693604,\n", - " 0.04023014008998871,\n", - " 0.5344060063362122,\n", - " -0.3049039840698242,\n", - " 0.12503939867019653,\n", - " -0.0063738590106368065,\n", - " 0.5353919863700867,\n", - " -0.21872639656066895\n", + " 0.1514986753463745,\n", + " 1.401354432106018,\n", + " 0.3517235517501831,\n", + " -0.8150630593299866,\n", + " -0.523166298866272,\n", + " -0.3630932569503784,\n", + " -0.4683886468410492,\n", + " 0.17266114056110382,\n", + " -0.23543331027030945,\n", + " -0.5443284511566162,\n", + " 0.21576863527297974,\n", + " -0.9783605933189392,\n", + " 1.1902419328689575,\n", + " 0.05040577054023743,\n", + " -0.5202329754829407,\n", + " -0.16423140466213226,\n", + " -0.29233694076538086,\n", + " -0.38901495933532715,\n", + " -0.5652655959129333,\n", + " -1.5913454294204712,\n", + " -0.7642431259155273,\n", + " -1.5816686153411865,\n", + " -0.8396549224853516,\n", + " -1.3265753984451294,\n", + " 0.17883414030075073,\n", + " 0.576181948184967,\n", + " 0.5685380697250366,\n", + " 0.5376473665237427,\n", + " -0.3115624189376831,\n", + " 0.3725539445877075,\n", + " 0.8384069800376892,\n", + " 0.1913319230079651,\n", + " -0.8014903664588928,\n", + " -0.007907867431640625,\n", + " -0.5338054299354553,\n", + " -0.6474889516830444,\n", + " -1.0113152265548706,\n", + " 0.02648647502064705,\n", + " -0.10224349051713943,\n", + " -1.072929859161377,\n", + " -1.1568632125854492,\n", + " 0.8384029269218445,\n", + " -1.3579269647598267,\n", + " -0.5934878587722778,\n", + " 0.13653478026390076,\n", + " -0.23295338451862335,\n", + " 0.02338385581970215,\n", + " -0.2941679060459137,\n", + " 0.24144020676612854,\n", + " 0.1747855842113495,\n", + " -0.014873862266540527,\n", + " 0.20355601608753204,\n", + " -0.003633161075413227,\n", + " 0.5389085412025452,\n", + " -0.16214129328727722\n", " ],\n", " [\n", - " 0.9745208024978638,\n", - " 1.6411770582199097,\n", - " 0.011551842093467712,\n", - " 0.9416571855545044,\n", - " -0.34567391872406006,\n", - " -0.305616557598114,\n", - " -0.24241159856319427,\n", - " -1.0071650743484497,\n", - " -0.13596588373184204,\n", - " 1.904878854751587,\n", - " 1.0379902124404907,\n", - " -0.5258059501647949,\n", - " 0.08713588118553162,\n", - " 0.6488298773765564,\n", - " 0.043180376291275024,\n", - " 0.2960386872291565,\n", - " 0.19371595978736877,\n", - " -0.5728404521942139,\n", - " -0.6003221273422241,\n", - " -1.3684114217758179,\n", - " 0.16984377801418304,\n", - " -0.997677206993103,\n", - " -0.8820958137512207,\n", - " -0.08379369974136353,\n", - " -0.2198265939950943,\n", - " 0.7478681802749634,\n", - " -0.13289690017700195,\n", - " 0.6055126786231995,\n", - " 0.013591520488262177,\n", - " 0.552927553653717,\n", - " 1.0734628438949585,\n", - " -0.1570722758769989,\n", - " -0.6280275583267212,\n", - " -0.42706063389778137,\n", - " 0.5036394596099854,\n", - " -0.4750063717365265,\n", - " 0.2665322422981262,\n", - " -0.0416048988699913,\n", - " -0.2380569875240326,\n", - " 0.1254364252090454,\n", - " 0.25495198369026184,\n", - " 1.0734580755233765,\n", - " -1.8388532400131226,\n", - " 0.689285397529602,\n", - " 2.5169692039489746,\n", - " 0.4923449754714966,\n", - " 0.4585099518299103,\n", - " 0.5566230416297913,\n", - " 1.953762173652649,\n", - " 1.2897024154663086,\n", - " -0.6108239889144897,\n", - " 2.4234204292297363,\n", - " -0.05348635092377663,\n", - " 2.5644595623016357,\n", - " -0.22086088359355927\n", + " 1.0924522876739502,\n", + " 1.3691527843475342,\n", + " -0.07067716866731644,\n", + " 1.1789993047714233,\n", + " -0.7767326831817627,\n", + " -0.25737613439559937,\n", + " 0.20370811223983765,\n", + " -1.0038195848464966,\n", + " 0.12055148929357529,\n", + " 2.332602024078369,\n", + " 0.7964164614677429,\n", + " 0.5360543727874756,\n", + " -0.13795414566993713,\n", + " 1.0176711082458496,\n", + " -0.3136840760707855,\n", + " 0.9249329566955566,\n", + " 0.537727952003479,\n", + " -1.1812560558319092,\n", + " -0.7269535064697266,\n", + " -0.76736980676651,\n", + " 0.11708268523216248,\n", + " -0.9698691368103027,\n", + " -0.5797880291938782,\n", + " -0.14410574734210968,\n", + " 0.19867916405200958,\n", + " 0.7335465550422668,\n", + " 0.08814100176095963,\n", + " 0.6794081330299377,\n", + " -0.08508408069610596,\n", + " 0.6086207628250122,\n", + " 1.1933220624923706,\n", + " -0.2659488916397095,\n", + " -0.4580877423286438,\n", + " -0.24715319275856018,\n", + " 0.4782482981681824,\n", + " -0.34979870915412903,\n", + " -0.2117306888103485,\n", + " -0.07547205686569214,\n", + " -0.46878135204315186,\n", + " 0.46530741453170776,\n", + " 0.46666836738586426,\n", + " 1.193317174911499,\n", + " -2.3628315925598145,\n", + " 0.7037661075592041,\n", + " 2.0700290203094482,\n", + " 0.49032771587371826,\n", + " 0.7943968772888184,\n", + " 0.18035945296287537,\n", + " 2.224592685699463,\n", + " 1.2325092554092407,\n", + " -0.8344841003417969,\n", + " 1.5976241827011108,\n", + " 0.0013084327802062035,\n", + " 2.0907530784606934,\n", + " -0.18517836928367615\n", " ]\n", " ]\n", " },\n", @@ -838,61 +740,61 @@ " ],\n", " \"logits\": [\n", " [\n", - " 5.569112777709961,\n", - " -0.5020171403884888,\n", - " 3.355616569519043,\n", - " 1.2582664489746094,\n", - " 1.3858609199523926,\n", - " 0.3561202883720398,\n", - " 4.800301551818848,\n", - " -1.0308297872543335,\n", - " -0.7910942435264587,\n", - " 1.2529215812683105,\n", - " -1.2155834436416626,\n", - " 0.8307411074638367,\n", - " -0.12144401669502258,\n", - " 9.678494453430176,\n", - " 1.8569309711456299,\n", - " 4.882192611694336,\n", - " 3.205979824066162,\n", - " -0.4538998007774353,\n", - " -0.590088427066803,\n", - " 0.6940065622329712,\n", - " 0.5590921640396118,\n", - " 1.8643975257873535,\n", - " -0.653666615486145,\n", - " 3.05572509765625,\n", - " -2.151517391204834,\n", - " -0.8255422115325928,\n", - " -0.5450078248977661,\n", - " 0.42817264795303345,\n", - " 0.007160749286413193,\n", - " 0.11352846771478653,\n", - " 0.48807865381240845,\n", - " -1.34535551071167,\n", - " 0.22795911133289337,\n", - " -1.933388113975525,\n", - " -0.7364113926887512,\n", - " -0.9042844772338867,\n", - " 1.3124635219573975,\n", - " 0.012029402889311314,\n", - " -0.6239970326423645,\n", - " 1.390344500541687,\n", - " 1.4910836219787598,\n", - " 0.4880709648132324,\n", - " -0.35117512941360474,\n", - " 0.41036996245384216,\n", - " 0.572378933429718,\n", - " 1.5470837354660034,\n", - " 1.403868556022644,\n", - " -0.664261519908905,\n", - " 2.738084316253662,\n", - " -0.5879711508750916,\n", - " 1.0336809158325195,\n", - " 1.1961349248886108,\n", - " -0.12495376169681549,\n", - " -0.22980979084968567,\n", - " 0.038008347153663635\n", + " 5.892396926879883,\n", + " -0.49729329347610474,\n", + " 3.4404735565185547,\n", + " 1.4037028551101685,\n", + " 1.4926042556762695,\n", + " 0.5995145440101624,\n", + " 5.144721984863281,\n", + " -0.8868793845176697,\n", + " -0.5772048830986023,\n", + " 2.4866859912872314,\n", + " -0.8809884190559387,\n", + " 1.0559413433074951,\n", + " -1.0544968843460083,\n", + " 8.170550346374512,\n", + " 2.298809766769409,\n", + " 4.560779571533203,\n", + " 3.909329652786255,\n", + " -0.524370551109314,\n", + " -0.5766317844390869,\n", + " 0.5325241088867188,\n", + " 0.4633113741874695,\n", + " 1.8912310600280762,\n", + " -1.1106513738632202,\n", + " 3.052121639251709,\n", + " -2.182252883911133,\n", + " -1.3615329265594482,\n", + " -0.14913541078567505,\n", + " 0.46431827545166016,\n", + " 0.07554009556770325,\n", + " 0.5355638265609741,\n", + " 0.9300331473350525,\n", + " -1.5641148090362549,\n", + " -0.07960118353366852,\n", + " -2.1044697761535645,\n", + " -1.0663528442382812,\n", + " -1.3057321310043335,\n", + " 1.3563634157180786,\n", + " 0.04978596419095993,\n", + " -0.8320205807685852,\n", + " 1.592291235923767,\n", + " 1.6624232530593872,\n", + " 0.9300246834754944,\n", + " -0.8972591161727905,\n", + " 0.9684799909591675,\n", + " 0.7739569544792175,\n", + " 1.801008939743042,\n", + " 1.642001986503601,\n", + " -0.7531395554542542,\n", + " 3.081038475036621,\n", + " -0.7239490747451782,\n", + " 1.1065503358840942,\n", + " 1.1402804851531982,\n", + " -0.03098512813448906,\n", + " 0.33966264128685,\n", + " 0.5207974314689636\n", " ]\n", " ]\n", " }\n", @@ -919,7 +821,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 28, "metadata": { "cellView": "form", "id": "nYz6NRB_rLGP" @@ -956,84 +858,38 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "0cff14529ed44602992665ab2769cc3a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "0e89a61715a2405795e9204d487e16a7": { + "dfbab67b2c494fb8ab0237a97f9738e0": { "model_module": "@jupyter-widgets/controls", + "model_name": "FileUploadModel", "model_module_version": "1.5.0", - "model_name": "HBoxModel", "state": { + "_counter": 0, "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", + "_model_name": "FileUploadModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_706504f4e2b44623b06d81e4bfb9fec6", - "IPY_MODEL_6139b052d48b4b8a88bf1d0cfbee89d1", - "IPY_MODEL_cb8a74409964470399e759c9c373c1fb" - ], - "layout": "IPY_MODEL_1127b0a462414b60937c6f38b1adee12" + "_view_name": "FileUploadView", + "accept": ".pdb", + "button_style": "", + "data": [], + "description": "Upload", + "description_tooltip": null, + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_200ab63cae634eddaa992fd64b35c0ac", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_59c5e99e773a4ab39eb9e8604814d36c" } }, - "1127b0a462414b60937c6f38b1adee12": { + "200ab63cae634eddaa992fd64b35c0ac": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1082,47 +938,52 @@ "width": null } }, - "174d3daccf6542128f9e665d225da25f": { + "59c5e99e773a4ab39eb9e8604814d36c": { "model_module": "@jupyter-widgets/controls", + "model_name": "ButtonStyleModel", "model_module_version": "1.5.0", - "model_name": "HTMLModel", "state": { - "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", + "_model_name": "ButtonStyleModel", "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_26ba5323b65441d5ae3bca32edeaeb6b", - "placeholder": "​", - "style": "IPY_MODEL_eb142d0f070c47a19b80d327c79929db", - "value": " 95.9k/95.9k [00:00<00:00, 1.08MB/s]" + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" } }, - "1da4309d84904fd0a519a0ac28a89acc": { + "2e1b8d20f17b4ef584c853fd4a99bf4b": { "model_module": "@jupyter-widgets/controls", + "model_name": "TextareaModel", "model_module_version": "1.5.0", - "model_name": "ButtonStyleModel", "state": { + "_dom_classes": [ + "variant_text_area" + ], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", + "_model_name": "TextareaModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "TextareaView", + "continuous_update": true, + "description": "Variant String:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_a6ebd99c816b4e58be247da685da9902", + "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", + "rows": null, + "style": "IPY_MODEL_32cd7130f6ba44fa85e4ad6f0aa492f4", + "value": "" } }, - "26ba5323b65441d5ae3bca32edeaeb6b": { + "a6ebd99c816b4e58be247da685da9902": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1149,7 +1010,7 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": null, + "height": "100px", "justify_content": null, "justify_items": null, "left": null, @@ -1168,13 +1029,56 @@ "right": null, "top": null, "visibility": null, - "width": null + "width": "500px" + } + }, + "32cd7130f6ba44fa85e4ad6f0aa492f4": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "initial" + } + }, + "18ee47ab60e047bd8881c70e1999438f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FileUploadModel", + "model_module_version": "1.5.0", + "state": { + "_counter": 0, + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FileUploadModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "FileUploadView", + "accept": ".json, .txt", + "button_style": "", + "data": [], + "description": "Upload", + "description_tooltip": null, + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_5ddecf2c18394ec2bda2e38999d2b1ae", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_429005aabdfa4724af48b83a45bf1868" } }, - "279615cb9a9f4d0a939e915aadb1390b": { + "5ddecf2c18394ec2bda2e38999d2b1ae": { "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", "model_name": "LayoutModel", + "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1223,10 +1127,10 @@ "width": null } }, - "3171d7d717ba4baba7ac948a4fb60529": { + "429005aabdfa4724af48b83a45bf1868": { "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", "model_name": "ButtonStyleModel", + "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", @@ -1238,1038 +1142,10 @@ "button_color": null, "font_weight": "" } - }, - "3db12ffb0cc64e47a9445ed6f30ad4a7": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_c064486920084853839ba97bbf7adcef", - "IPY_MODEL_c48bf3a44113463e9a2ce990ca58fd89", - "IPY_MODEL_49ed05570a474155ac1cc9c920956277" - ], - "layout": "IPY_MODEL_b8de008d9ea8492d89b4220190f341df" - } - }, - "3f8c6dc919de4ca79ac2d5bb4cac2d4f": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "49c094a124f6497f81e8d99d5f539c3e": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "49ed05570a474155ac1cc9c920956277": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_0cff14529ed44602992665ab2769cc3a", - "placeholder": "​", - "style": "IPY_MODEL_840350d162c54b248ad178915821d3e2", - "value": " 176/176 [00:00<00:00, 4.07kB/s]" - } - }, - "5268bf3171724c6aabba1a5e491120d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_279615cb9a9f4d0a939e915aadb1390b", - "max": 95901, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_706b2fd4323d42129ef68cf138535fe8", - "value": 95901 - } - }, - "554bd3d19ad24ab79e011fe89c768793": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "561825fd86a24139b76b0714fcf4ee07": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "6139b052d48b4b8a88bf1d0cfbee89d1": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b31c4d8d76224754846690925ecf8910", - "max": 269, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_554bd3d19ad24ab79e011fe89c768793", - "value": 269 - } - }, - "61459277623143eeae90e152128d8e41": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "652003f6d3774d4f96dccccc6531d9c2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "TextareaModel", - "state": { - "_dom_classes": [ - "variant_text_area" - ], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "TextareaModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "TextareaView", - "continuous_update": true, - "description": "Variant String:", - "description_tooltip": null, - "disabled": false, - "layout": "IPY_MODEL_c505a59405964bffbee1f02db2fe2227", - "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", - "rows": null, - "style": "IPY_MODEL_e955bf593f2f451c9a986b0683d35d30", - "value": "" - } - }, - "706504f4e2b44623b06d81e4bfb9fec6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_fc53173bf32d4afabfdf9ee50cb3b00a", - "placeholder": "​", - "style": "IPY_MODEL_eb4407c45c0e4ac9b0fed9b2e0c56ff9", - "value": "config.json: 100%" - } - }, - "706b2fd4323d42129ef68cf138535fe8": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "ProgressStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "ProgressStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "bar_color": null, - "description_width": "" - } - }, - "7a62aa6956264d2394634f14579e963f": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "840350d162c54b248ad178915821d3e2": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "948b99490be74d4483ce432455905bda": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "9a4fa89166dc4ed9ba241082e0b295d0": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HBoxModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HBoxModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HBoxView", - "box_style": "", - "children": [ - "IPY_MODEL_e89279b489fc4dcaa507ff5b8e67d890", - "IPY_MODEL_5268bf3171724c6aabba1a5e491120d0", - "IPY_MODEL_174d3daccf6542128f9e665d225da25f" - ], - "layout": "IPY_MODEL_49c094a124f6497f81e8d99d5f539c3e" - } - }, - "aceb1c83343f42f5ba327ea0181f54ba": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b292e0907116481f8a67236d5fff4023": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b31c4d8d76224754846690925ecf8910": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "b85b44e3b4b843f0946831f3c483f8d6": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FileUploadModel", - "state": { - "_counter": 0, - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FileUploadModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "FileUploadView", - "accept": ".pdb", - "button_style": "", - "data": [], - "description": "Upload", - "description_tooltip": null, - "disabled": false, - "error": "", - "icon": "upload", - "layout": "IPY_MODEL_7a62aa6956264d2394634f14579e963f", - "metadata": [], - "multiple": false, - "style": "IPY_MODEL_1da4309d84904fd0a519a0ac28a89acc" - } - }, - "b8de008d9ea8492d89b4220190f341df": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "bd9755e9b09148d480b2d4604aa9ff16": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "c064486920084853839ba97bbf7adcef": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_561825fd86a24139b76b0714fcf4ee07", - "placeholder": "​", - "style": "IPY_MODEL_e243c6dbff6f462ba643e44ad05d6199", - "value": "model.safetensors: 100%" - } - }, - "c48bf3a44113463e9a2ce990ca58fd89": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FloatProgressModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FloatProgressModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "ProgressView", - "bar_style": "success", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_dca0f426047a4fc69905113bfab76ddf", - "max": 176, - "min": 0, - "orientation": "horizontal", - "style": "IPY_MODEL_61459277623143eeae90e152128d8e41", - "value": 176 - } - }, - "c505a59405964bffbee1f02db2fe2227": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": "100px", - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": "500px" - } - }, - "cb8a74409964470399e759c9c373c1fb": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_b292e0907116481f8a67236d5fff4023", - "placeholder": "​", - "style": "IPY_MODEL_948b99490be74d4483ce432455905bda", - "value": " 269/269 [00:00<00:00, 6.48kB/s]" - } - }, - "dca0f426047a4fc69905113bfab76ddf": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } - }, - "e243c6dbff6f462ba643e44ad05d6199": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "e89279b489fc4dcaa507ff5b8e67d890": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "HTMLModel", - "state": { - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "HTMLModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "HTMLView", - "description": "", - "description_tooltip": null, - "layout": "IPY_MODEL_aceb1c83343f42f5ba327ea0181f54ba", - "placeholder": "​", - "style": "IPY_MODEL_3f8c6dc919de4ca79ac2d5bb4cac2d4f", - "value": "huggingface_wrapper.py: 100%" - } - }, - "e955bf593f2f451c9a986b0683d35d30": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "initial" - } - }, - "eb142d0f070c47a19b80d327c79929db": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "eb4407c45c0e4ac9b0fed9b2e0c56ff9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "DescriptionStyleModel", - "state": { - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "" - } - }, - "f77f31e709c84c48b86316dbe9d7b0c9": { - "model_module": "@jupyter-widgets/controls", - "model_module_version": "1.5.0", - "model_name": "FileUploadModel", - "state": { - "_counter": 0, - "_dom_classes": [], - "_model_module": "@jupyter-widgets/controls", - "_model_module_version": "1.5.0", - "_model_name": "FileUploadModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/controls", - "_view_module_version": "1.5.0", - "_view_name": "FileUploadView", - "accept": ".json, .txt", - "button_style": "", - "data": [], - "description": "Upload", - "description_tooltip": null, - "disabled": false, - "error": "", - "icon": "upload", - "layout": "IPY_MODEL_bd9755e9b09148d480b2d4604aa9ff16", - "metadata": [], - "multiple": false, - "style": "IPY_MODEL_3171d7d717ba4baba7ac948a4fb60529" - } - }, - "fc53173bf32d4afabfdf9ee50cb3b00a": { - "model_module": "@jupyter-widgets/base", - "model_module_version": "1.2.0", - "model_name": "LayoutModel", - "state": { - "_model_module": "@jupyter-widgets/base", - "_model_module_version": "1.2.0", - "_model_name": "LayoutModel", - "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "LayoutView", - "align_content": null, - "align_items": null, - "align_self": null, - "border": null, - "bottom": null, - "display": null, - "flex": null, - "flex_flow": null, - "grid_area": null, - "grid_auto_columns": null, - "grid_auto_flow": null, - "grid_auto_rows": null, - "grid_column": null, - "grid_gap": null, - "grid_row": null, - "grid_template_areas": null, - "grid_template_columns": null, - "grid_template_rows": null, - "height": null, - "justify_content": null, - "justify_items": null, - "left": null, - "margin": null, - "max_height": null, - "max_width": null, - "min_height": null, - "min_width": null, - "object_fit": null, - "object_position": null, - "order": null, - "overflow": null, - "overflow_x": null, - "overflow_y": null, - "padding": null, - "right": null, - "top": null, - "visibility": null, - "width": null - } } } } }, "nbformat": 4, "nbformat_minor": 0 -} +} \ No newline at end of file From 508b30066b0131366effb67b0f28e62fe835d88a Mon Sep 17 00:00:00 2001 From: John Peters Date: Wed, 28 Aug 2024 17:35:29 -0500 Subject: [PATCH 10/10] "Changed some of the wording in the predicting notebook to reflect feedback and updated the links in the finetuning notebook" --- notebooks/colab_finetuning.ipynb | 954 +++++++-------- notebooks/colab_predicting.ipynb | 1886 ++++++++++++++++++++++++------ 2 files changed, 2001 insertions(+), 839 deletions(-) diff --git a/notebooks/colab_finetuning.ipynb b/notebooks/colab_finetuning.ipynb index 1ed20e7..7401b7b 100644 --- a/notebooks/colab_finetuning.ipynb +++ b/notebooks/colab_finetuning.ipynb @@ -13,7 +13,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "vZx7K4mpi4w1", "metadata": { "cellView": "form", @@ -21,20 +21,20 @@ "base_uri": "https://localhost:8080/" }, "id": "vZx7K4mpi4w1", - "outputId": "a5c16482-b458-4867-aa34-6e0274126d4f" + "outputId": "08606a43-e6f3-4967-e09c-a05bda6e2fed" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ "Cloning into 'metl'...\n", - "remote: Enumerating objects: 370, done.\u001b[K\n", - "remote: Counting objects: 100% (370/370), done.\u001b[K\n", - "remote: Compressing objects: 100% (250/250), done.\u001b[K\n", - "remote: Total 370 (delta 135), reused 305 (delta 84), pack-reused 0 (from 0)\u001b[K\n", - "Receiving objects: 100% (370/370), 18.03 MiB | 17.74 MiB/s, done.\n", - "Resolving deltas: 100% (135/135), done.\n", + "remote: Enumerating objects: 416, done.\u001b[K\n", + "remote: Counting objects: 100% (416/416), done.\u001b[K\n", + "remote: Compressing objects: 100% (280/280), done.\u001b[K\n", + "remote: Total 416 (delta 166), reused 330 (delta 98), pack-reused 0 (from 0)\u001b[K\n", + "Receiving objects: 100% (416/416), 18.08 MiB | 14.06 MiB/s, done.\n", + "Resolving deltas: 100% (166/166), done.\n", "/content/metl\n" ] } @@ -47,7 +47,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "id": "vl7ugAoEjNFQ", "metadata": { "cellView": "form", @@ -55,23 +55,23 @@ "base_uri": "https://localhost:8080/" }, "id": "vl7ugAoEjNFQ", - "outputId": "894a7c19-e680-4ab2-a4e1-88f55507949d" + "outputId": "37a27f98-3c5a-4351-93b0-2a950970e7fe" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ - "--2024-08-16 16:51:45-- https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", - "Resolving repo.anaconda.com (repo.anaconda.com)... 104.16.32.241, 104.16.191.158, 2606:4700::6810:bf9e, ...\n", - "Connecting to repo.anaconda.com (repo.anaconda.com)|104.16.32.241|:443... connected.\n", + "--2024-08-28 22:01:31-- https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh\n", + "Resolving repo.anaconda.com (repo.anaconda.com)... 104.16.191.158, 104.16.32.241, 2606:4700::6810:20f1, ...\n", + "Connecting to repo.anaconda.com (repo.anaconda.com)|104.16.191.158|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", - "Length: 146836934 (140M) [application/octet-stream]\n", + "Length: 148981743 (142M) [application/octet-stream]\n", "Saving to: ‘./miniconda.sh’\n", "\n", - "./miniconda.sh 100%[===================>] 140.03M 315MB/s in 0.4s \n", + "./miniconda.sh 100%[===================>] 142.08M 87.1MB/s in 1.6s \n", "\n", - "2024-08-16 16:51:46 (315 MB/s) - ‘./miniconda.sh’ saved [146836934/146836934]\n", + "2024-08-28 22:01:32 (87.1 MB/s) - ‘./miniconda.sh’ saved [148981743/148981743]\n", "\n", "PREFIX=/usr/local\n", "Unpacking payload ...\n", @@ -115,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "id": "432eebaf-00b8-42bf-b927-fd651e6ab94d", "metadata": { "ExecuteTime": { @@ -135,7 +135,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "id": "c566507e-1012-4415-82ba-7498950e0b6c", "metadata": { "id": "c566507e-1012-4415-82ba-7498950e0b6c" @@ -177,7 +177,7 @@ "\n", "For demonstration purposes, this repository contains the [avGFP dataset](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp) from [Sarkisyan et al. (2016)](https://doi.org/10.1038/nature17995).\n", "See the [metl-pub](https://github.com/gitter-lab/metl-pub) repository to access the other experimental datasets we used in our preprint.\n", - "See the README in the [dms_data](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/data/dms_data) directory for information about how to use your own experimental dataset." + "See the README in the [dms_data](https://github.com/gitter-lab/metl/tree/main/data/dms_data/) directory for information about how to use your own experimental dataset." ] }, { @@ -190,10 +190,10 @@ "# Acquire a pretrained model\n", "Pretrained METL models are available in the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository. You can use one of those, or you can pretrain your own METL model (see [pretraining.ipynb](https://github.com/gitter-lab/metl/blob/main/notebooks/pretraining.ipynb)).\n", "\n", - "For demonstration purposes, we include a pretrained avGFP METL-Local model from the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository in the [pretrained_models](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/pretrained_models) directory. This model is `METL-L-2M-3D-GFP` (UUID: `Hr4GNHws`).\n", + "For demonstration purposes, we include a pretrained avGFP METL-Local model from the [metl-pretrained](https://github.com/gitter-lab/metl-pretrained) repository in the [pretrained_models](https://github.com/gitter-lab/metl/tree/main/pretrained_models) directory. This model is `METL-L-2M-3D-GFP` (UUID: `Hr4GNHws`).\n", "It is the avGFP METL-Local source model we used for the analysis in our preprint.\n", "\n", - "We will show how to finetune this model using the [experimental avGFP dataset](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/data/dms_data/avgfp)." + "We will show how to finetune this model using the [experimental avGFP dataset](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp)." ] }, { @@ -205,12 +205,12 @@ "source": [ "# Training arguments\n", "\n", - "The script for finetuning on experimental data is [train_target_model.py](https://github.com/gitter-lab/metl/blob/main/code/train_target_model.py). This script has a number of arguments you can view by uncommenting and running the below cell. There are additional arguments related to architecture that won't show up if you run the command, but you can view them in [models.py](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/code/models.py) in the `TransferModel` class." + "The script for finetuning on experimental data is [train_target_model.py](https://github.com/gitter-lab/metl/blob/main/code/train_target_model.py). This script has a number of arguments you can view by uncommenting and running the below cell. There are additional arguments related to architecture that won't show up if you run the command, but you can view them in [models.py](https://github.com/gitter-lab/metl/tree/main/code/models.py) in the `TransferModel` class." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "id": "bca8aeea-3dc3-47eb-915c-d80132be8fef", "metadata": { "id": "bca8aeea-3dc3-47eb-915c-d80132be8fef" @@ -227,14 +227,14 @@ "id": "7ec8c31b-2da2-4ba7-9f4e-39e30dce8056" }, "source": [ - "We set up finetuning arguments for this example in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args/pretrain_avgfp_local.txt) in the [args](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args) directory. This argument file can be used directly with [train_target_model.py](https://github.com/gitter-lab/metl/blob/main/code/train_target_model.py) by calling the command `!python code/train_target_model.py @args/finetune_avgfp_local.txt` (we do this in the next section).\n", + "We set up finetuning arguments for this example in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/args/pretrain_avgfp_local.txt) in the [args](https://github.com/gitter-lab/metl/tree/main/args) directory. This argument file can be used directly with [train_target_model.py](https://github.com/gitter-lab/metl/blob/main/code/train_target_model.py) by calling the command `!python code/train_target_model.py @args/finetune_avgfp_local.txt` (we do this in the next section).\n", "\n", "Uncomment and run the cell below to view the contents of the argument file. The sections below will walk through and explain the key arguments." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "id": "a06a897f-877d-4e41-9bee-4d3eabeead7d", "metadata": { "id": "a06a897f-877d-4e41-9bee-4d3eabeead7d" @@ -264,7 +264,7 @@ }, "source": [ "\n", - "Specify the dataset name and the train/val/test split. The dataset must be defined in [datasets.yml](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/data/dms_data/datasets.yml). For demonstration purposes, we are using one of the reduced dataset size splits with a dataset size of 160 (train size of 128).\n", + "Specify the dataset name and the train/val/test split. The dataset must be defined in [datasets.yml](https://github.com/gitter-lab/metl/tree/main/data/dms_data/datasets.yml). For demonstration purposes, we are using one of the reduced dataset size splits with a dataset size of 160 (train size of 128).\n", "```\n", "--ds_name\n", "avgfp\n", @@ -290,7 +290,7 @@ "score\n", "```\n", "\n", - "The METL-Local model we are finetuning uses 3D structure-based relative position embeddings, so we need to specify the PDB filename. This PDB file is in the [data/pdb_files](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/data/pdb_files) directory, which the script checks by default, so there is no need to specify the full path. You can also just specify \"auto\" to use the PDB file defined for this dataset in [datasets.yml](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/data/dms_data/datasets.yml).\n", + "The METL-Local model we are finetuning uses 3D structure-based relative position embeddings, so we need to specify the PDB filename. This PDB file is in the [data/pdb_files](https://github.com/gitter-lab/metl/tree/main/data/pdb_files) directory, which the script checks by default, so there is no need to specify the full path. You can also just specify \"auto\" to use the PDB file defined for this dataset in [datasets.yml](https://github.com/gitter-lab/metl/tree/main/data/dms_data/datasets.yml).\n", "\n", "```\n", "--pdb_fn\n", @@ -477,33 +477,33 @@ "id": "8d3d8d23-9d54-4888-842d-4fc8fd843b40" }, "source": [ - "All the arguments described above are contained in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/data/dms_data/avgfp/args/pretrain_avgfp_local.txt), which can be fed directly into [train_target_model.py](https://github.com/gitter-lab/metl/blob/main/code/train_target_model.py).\n", + "All the arguments described above are contained in [finetune_avgfp_local.txt](https://github.com/gitter-lab/metl/tree/main/args/pretrain_avgfp_local.txt), which can be fed directly into [train_target_model.py](https://github.com/gitter-lab/metl/blob/main/code/train_target_model.py).\n", "\n", "PyTorch Lightning has a built-in progress bar that is convenient for seeing training progress, but it does not display correctly in Jupyter when calling the script with `!python`. We are going to disable the progress bar for by setting the flag `--enable_progress_bar false`. Instead, we implemented a simple print statement to track training progress, which we will enable with the flag `--enable_simple_progress_messages`." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "977b4d8d-4662-4e03-955c-dc4a8ae7c1dc", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "977b4d8d-4662-4e03-955c-dc4a8ae7c1dc", - "outputId": "116b7cd5-8d91-4f3d-cbea-8ecc90671343" + "outputId": "a487d3f2-97fd-47ea-d07b-9c0cd21c9fb7" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ - "Random seed not specified, using: 806881872\n", - "Global seed set to 806881872\n", - "Created model UUID: SrcZPH8V\n", - "Created log directory: output/training_logs/SrcZPH8V\n", - "Final UUID: SrcZPH8V\n", - "Final log directory: output/training_logs/SrcZPH8V\n", + "Random seed not specified, using: 522644021\n", + "Global seed set to 522644021\n", + "Created model UUID: fmngE6sB\n", + "Created log directory: output/training_logs/fmngE6sB\n", + "Final UUID: fmngE6sB\n", + "Final log directory: output/training_logs/fmngE6sB\n", "Trainer already configured with model summary callbacks: []. Skipping setting a default `ModelSummary` callback.\n", "GPU available: True (cuda), used: True\n", "TPU available: False, using: 0 TPU cores\n", @@ -540,60 +540,60 @@ "Starting sanity check...\n", "Sanity check complete.\n", "Starting training...\n", - "Epoch 0: Train Loss = 2.464, Val Loss = 2.207\n", - "Epoch 1: Train Loss = 2.461, Val Loss = 2.157\n", - "Epoch 2: Train Loss = 2.423, Val Loss = 2.109\n", - "Epoch 3: Train Loss = 2.390, Val Loss = 2.062\n", - "Epoch 4: Train Loss = 2.350, Val Loss = 2.018\n", - "Epoch 5: Train Loss = 2.259, Val Loss = 1.976\n", - "Epoch 6: Train Loss = 2.221, Val Loss = 1.937\n", - "Epoch 7: Train Loss = 2.132, Val Loss = 1.900\n", - "Epoch 8: Train Loss = 2.109, Val Loss = 1.867\n", - "Epoch 9: Train Loss = 2.144, Val Loss = 1.836\n", - "Epoch 10: Train Loss = 2.102, Val Loss = 1.808\n", - "Epoch 11: Train Loss = 2.013, Val Loss = 1.783\n", - "Epoch 12: Train Loss = 2.014, Val Loss = 1.760\n", - "Epoch 13: Train Loss = 1.979, Val Loss = 1.741\n", - "Epoch 14: Train Loss = 1.995, Val Loss = 1.724\n", - "Epoch 15: Train Loss = 1.945, Val Loss = 1.710\n", - "Epoch 16: Train Loss = 1.904, Val Loss = 1.699\n", - "Epoch 17: Train Loss = 1.972, Val Loss = 1.690\n", - "Epoch 18: Train Loss = 1.936, Val Loss = 1.682\n", - "Epoch 19: Train Loss = 1.931, Val Loss = 1.677\n", - "Epoch 20: Train Loss = 1.907, Val Loss = 1.673\n", - "Epoch 21: Train Loss = 1.909, Val Loss = 1.671\n", - "Epoch 22: Train Loss = 1.898, Val Loss = 1.669\n", - "Epoch 23: Train Loss = 1.904, Val Loss = 1.669\n", - "Epoch 24: Train Loss = 1.890, Val Loss = 1.668\n", - "Epoch 25: Train Loss = 1.912, Val Loss = 1.668\n", - "Epoch 26: Train Loss = 1.894, Val Loss = 1.642\n", - "Epoch 27: Train Loss = 1.807, Val Loss = 1.615\n", - "Epoch 28: Train Loss = 1.817, Val Loss = 1.588\n", - "Epoch 29: Train Loss = 1.811, Val Loss = 1.562\n", - "Epoch 30: Train Loss = 1.764, Val Loss = 1.537\n", - "Epoch 31: Train Loss = 1.762, Val Loss = 1.512\n", - "Epoch 32: Train Loss = 1.680, Val Loss = 1.489\n", - "Epoch 33: Train Loss = 1.656, Val Loss = 1.466\n", - "Epoch 34: Train Loss = 1.618, Val Loss = 1.445\n", - "Epoch 35: Train Loss = 1.621, Val Loss = 1.424\n", - "Epoch 36: Train Loss = 1.581, Val Loss = 1.405\n", - "Epoch 37: Train Loss = 1.469, Val Loss = 1.387\n", - "Epoch 38: Train Loss = 1.531, Val Loss = 1.371\n", - "Epoch 39: Train Loss = 1.478, Val Loss = 1.357\n", - "Epoch 40: Train Loss = 1.475, Val Loss = 1.345\n", - "Epoch 41: Train Loss = 1.453, Val Loss = 1.335\n", - "Epoch 42: Train Loss = 1.408, Val Loss = 1.326\n", - "Epoch 43: Train Loss = 1.467, Val Loss = 1.319\n", - "Epoch 44: Train Loss = 1.420, Val Loss = 1.314\n", - "Epoch 45: Train Loss = 1.412, Val Loss = 1.310\n", - "Epoch 46: Train Loss = 1.401, Val Loss = 1.307\n", - "Epoch 47: Train Loss = 1.443, Val Loss = 1.306\n", - "Epoch 48: Train Loss = 1.387, Val Loss = 1.305\n", - "Epoch 49: Train Loss = 1.368, Val Loss = 1.305\n", + "Epoch 0: Train Loss = 2.322, Val Loss = 2.024\n", + "Epoch 1: Train Loss = 2.348, Val Loss = 1.977\n", + "Epoch 2: Train Loss = 2.255, Val Loss = 1.931\n", + "Epoch 3: Train Loss = 2.265, Val Loss = 1.888\n", + "Epoch 4: Train Loss = 2.179, Val Loss = 1.846\n", + "Epoch 5: Train Loss = 2.138, Val Loss = 1.807\n", + "Epoch 6: Train Loss = 2.080, Val Loss = 1.770\n", + "Epoch 7: Train Loss = 2.037, Val Loss = 1.735\n", + "Epoch 8: Train Loss = 1.982, Val Loss = 1.703\n", + "Epoch 9: Train Loss = 1.948, Val Loss = 1.674\n", + "Epoch 10: Train Loss = 1.962, Val Loss = 1.648\n", + "Epoch 11: Train Loss = 1.894, Val Loss = 1.624\n", + "Epoch 12: Train Loss = 1.903, Val Loss = 1.603\n", + "Epoch 13: Train Loss = 1.889, Val Loss = 1.585\n", + "Epoch 14: Train Loss = 1.822, Val Loss = 1.570\n", + "Epoch 15: Train Loss = 1.838, Val Loss = 1.556\n", + "Epoch 16: Train Loss = 1.811, Val Loss = 1.546\n", + "Epoch 17: Train Loss = 1.808, Val Loss = 1.537\n", + "Epoch 18: Train Loss = 1.803, Val Loss = 1.530\n", + "Epoch 19: Train Loss = 1.754, Val Loss = 1.525\n", + "Epoch 20: Train Loss = 1.788, Val Loss = 1.521\n", + "Epoch 21: Train Loss = 1.779, Val Loss = 1.519\n", + "Epoch 22: Train Loss = 1.771, Val Loss = 1.518\n", + "Epoch 23: Train Loss = 1.790, Val Loss = 1.517\n", + "Epoch 24: Train Loss = 1.803, Val Loss = 1.517\n", + "Epoch 25: Train Loss = 1.824, Val Loss = 1.517\n", + "Epoch 26: Train Loss = 1.773, Val Loss = 1.486\n", + "Epoch 27: Train Loss = 1.741, Val Loss = 1.455\n", + "Epoch 28: Train Loss = 1.674, Val Loss = 1.425\n", + "Epoch 29: Train Loss = 1.671, Val Loss = 1.394\n", + "Epoch 30: Train Loss = 1.592, Val Loss = 1.365\n", + "Epoch 31: Train Loss = 1.603, Val Loss = 1.335\n", + "Epoch 32: Train Loss = 1.581, Val Loss = 1.307\n", + "Epoch 33: Train Loss = 1.526, Val Loss = 1.279\n", + "Epoch 34: Train Loss = 1.489, Val Loss = 1.253\n", + "Epoch 35: Train Loss = 1.445, Val Loss = 1.228\n", + "Epoch 36: Train Loss = 1.375, Val Loss = 1.203\n", + "Epoch 37: Train Loss = 1.394, Val Loss = 1.181\n", + "Epoch 38: Train Loss = 1.337, Val Loss = 1.160\n", + "Epoch 39: Train Loss = 1.358, Val Loss = 1.142\n", + "Epoch 40: Train Loss = 1.326, Val Loss = 1.126\n", + "Epoch 41: Train Loss = 1.259, Val Loss = 1.111\n", + "Epoch 42: Train Loss = 1.200, Val Loss = 1.099\n", + "Epoch 43: Train Loss = 1.180, Val Loss = 1.090\n", + "Epoch 44: Train Loss = 1.148, Val Loss = 1.082\n", + "Epoch 45: Train Loss = 1.126, Val Loss = 1.076\n", + "Epoch 46: Train Loss = 1.182, Val Loss = 1.072\n", + "Epoch 47: Train Loss = 1.177, Val Loss = 1.070\n", + "Epoch 48: Train Loss = 1.168, Val Loss = 1.069\n", + "Epoch 49: Train Loss = 1.091, Val Loss = 1.069\n", "`Trainer.fit` stopped: `max_epochs=50` reached.\n", - "Restoring states from the checkpoint path at output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", + "Restoring states from the checkpoint path at output/training_logs/fmngE6sB/checkpoints/epoch=49-step=50.ckpt\n", "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", - "Loaded model weights from checkpoint at output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", + "Loaded model weights from checkpoint at output/training_logs/fmngE6sB/checkpoints/epoch=49-step=50.ckpt\n", "/usr/local/lib/python3.9/site-packages/torch/utils/data/dataloader.py:563: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.\n", " warnings.warn(_create_warning_msg(\n", "Starting testing...\n", @@ -601,13 +601,13 @@ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1m Test metric \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m DataLoader 0 \u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩\n", - "│\u001b[36m \u001b[0m\u001b[36m test_loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 1.3567686080932617 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test_pearson \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6589984893798828 \u001b[0m\u001b[35m \u001b[0m│\n", - "│\u001b[36m \u001b[0m\u001b[36m test_spearman \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6308208107948303 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test_loss \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 1.2109477519989014 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test_pearson \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6558916568756104 \u001b[0m\u001b[35m \u001b[0m│\n", + "│\u001b[36m \u001b[0m\u001b[36m test_spearman \u001b[0m\u001b[36m \u001b[0m│\u001b[35m \u001b[0m\u001b[35m 0.6332594752311707 \u001b[0m\u001b[35m \u001b[0m│\n", "└───────────────────────────┴───────────────────────────┘\n", - "Restoring states from the checkpoint path at output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", + "Restoring states from the checkpoint path at output/training_logs/fmngE6sB/checkpoints/epoch=49-step=50.ckpt\n", "LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]\n", - "Loaded model weights from checkpoint at output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", + "Loaded model weights from checkpoint at output/training_logs/fmngE6sB/checkpoints/epoch=49-step=50.ckpt\n", "Starting prediction...\n", "Prediction complete.\n", "saving a scatter plot for set: train (128 variants)\n", @@ -615,9 +615,9 @@ "saving a scatter plot for set: test (4655 variants)\n", " mse pearsonr r2 spearmanr\n", "set \n", - "train 1.456980 0.722311 -0.248835 0.686027\n", - "val 1.305009 0.704652 -0.210136 0.730822\n", - "test 1.356768 0.658999 -0.218819 0.630821\n" + "train 1.286097 0.734186 -0.102364 0.693757\n", + "val 1.069018 0.737532 0.008699 0.725690\n", + "test 1.210948 0.655892 -0.087824 0.633260\n" ] } ], @@ -700,22 +700,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "id": "63d8ce0a-5534-406f-90b6-6c155cb6ea9c", "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "63d8ce0a-5534-406f-90b6-6c155cb6ea9c", - "outputId": "f8f83cdb-8c79-4550-c745-869ea9d03962" + "outputId": "3406c304-902c-425d-ebe5-65d03c3b480c" }, "outputs": [ { - "name": "stdout", "output_type": "stream", + "name": "stdout", "text": [ - "Processing checkpoint: output/training_logs/SrcZPH8V/checkpoints/epoch=49-step=50.ckpt\n", - "Saving converted checkpoint to: output/training_logs/SrcZPH8V/checkpoints/SrcZPH8V.pt\n" + "Processing checkpoint: output/training_logs/fmngE6sB/checkpoints/epoch=49-step=50.ckpt\n", + "Saving converted checkpoint to: output/training_logs/fmngE6sB/checkpoints/fmngE6sB.pt\n" ] } ], @@ -742,83 +742,95 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "ff35ce69-97ed-4a5a-b082-f197aae1addc", "metadata": { "colab": { "base_uri": "https://localhost:8080/", - "height": 217, + "height": 341, "referenced_widgets": [ - "42839897b9ce4fa4a524552d2fc989d9", - "aa724e8a4a5f4854906068997610ac4f", - "442251f8a1474208ad2ed82debf07e2e", - "132972e875d24e3a82dbbcf98a04f0ab", - "b3a8c29390c54992a779d063b8efba43", - "04c46c0890714949a9d75e3f9814196f", - "7e90828d391d4169b9a92aff6b2ff21f", - "1b95ab13b8634294967b009f9547ee82", - "33659e9904434bc986f6a9c31c92438a", - "39b9f6db0cf6436bbaaa7aef3a18e8f8", - "2b447d15f2e247749c00d39d8f4373fb", - "2ff605c0f3d64de4a57f806696f07d34", - "33b7810598824a809f7a3ad43d3b82ff", - "0899ce301cce48549914a63b3814b7b9", - "b33b73b6146d4790aadbb04d6c93dca3", - "8efde142cb0f42d29d482364c0601a9d", - "edf3bc9f33e0449a807d14f19533b686", - "47126a1b03f64051a2f123efbc66847c", - "11b0a14c061047809ab1f0966ae7988a", - "bbcfb2aa215041fcabd5c50657cb137d", - "a09487f30a37419eb7f59e514f522a28", - "f0636739f1844b2394ecea3a51a67bc1", - "455decadb6e742fda1f31f7515c57358", - "3285d87b40a2481f851e7e1610e575d7", - "4dc14eb5a7874943983ab033d8caadff", - "70046589d7df489daab19c3a5dd303df", - "c329fc9ad7ea489f9f592800f00b1720", - "02d7c9d4a0e64459a2049d8c0e6c63b9", - "93e0ac15295a40fea88e4573c7ba36cc", - "36185473d9084edf8183ac220b7d2bca", - "fc29e2fc8d674cbcb44e49bb02a6133d", - "1e68504735754492b54d2c26270299c3", - "df1241447f234f1eb5f640956da48426" + "b7b47f570c8c43b6bf2230e6a44d3e09", + "219fdb01577845ea8fe0ad54a77cf65d", + "275bb85ac0104926a7988da85947b332", + "f7f2291a716346888c03cf0481b3b4b7", + "55be7aa5f252407bbe8e00f1c182fb22", + "ac4e32e574354ec095f92678a0313f4e", + "5c3b1f7e1e75469da8d453d63c762aad", + "a2f6a37975d54b418fde8afdeb86ffa0", + "6f0c2bfb83ab494fa67af09ad82f1a19", + "1dea0603d40b4d4f84193876183ebfbc", + "cdf78bd9b62d4d5c9809f9ff99cd296b", + "adf1bab3a2cc4ceb94031be73340031e", + "a9e9d6e3751f42b0857e3c6736af3fc7", + "98ffe8af93d5480e94c00ba5f09db454", + "cc76bf4678fd49148f5f25236daa43d2", + "908beed2fd40426db19081750bfac4fb", + "2b5138e0f130467d9af35736eb8bce41", + "865015002a294027951beda6cbc1a07c", + "5642d3dea048402abf2cad21c25a4c01", + "7e920825842744eeb4d00631b5ffc08a", + "4d0d620efc564efa8e0e069c59a14460", + "79b93dcc01304185a65877e0a51e861d", + "ef9b97e9f9434dc79b2201bde062a0c4", + "e6df8ef3f9ca4e17a76a093c753a5b47", + "f78d7b0a73974cbea0d992824c9a795f", + "16a9352d655043e682c1cb20f8214479", + "f12897838468411c94e8126a56890057", + "5d4f099cd3624ae9adc500aa93a80ae0", + "c4250b0106404bc78368f17819f51fde", + "dacad6e28f7e4b369dbf7f03c88fa00e", + "ae47fbb36d6a4f4ba3394a2c85fb599e", + "95c96e9e3f2e4ad48cf08e55a4341d1e", + "ace8a8608099458e84cfb991ad462631" ] }, "id": "ff35ce69-97ed-4a5a-b082-f197aae1addc", - "outputId": "ffff474d-38af-47b2-8a1a-3d4b09a77f2d" + "outputId": "e549e68a-df63-42e2-f687-c6923882db07" }, "outputs": [ { + "output_type": "stream", + "name": "stderr", + "text": [ + "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "output_type": "display_data", "data": { + "text/plain": [ + "config.json: 0%| | 0.00/269 [00:00] 76.92K --.-KB/s in 0.01s \n", "\n", - "2024-08-27 18:37:23 (6.32 MB/s) - ‘2qmt_p.pdb’ saved [78764/78764]\n", + "2024-08-28 21:50:07 (6.60 MB/s) - ‘2qmt_p.pdb’ saved [78764/78764]\n", "\n" ] } @@ -63,7 +76,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 3, "metadata": { "cellView": "form", "id": "mpjvGjzArLF1" @@ -114,12 +127,107 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 4, "metadata": { "cellView": "form", - "id": "vIp69-KLrLF8" + "colab": { + "base_uri": "https://localhost:8080/", + "height": 237, + "referenced_widgets": [ + "548aee36a23840da8d2d9112c1a126e4", + "9875bd75c19140e8982cfc83ab405980", + "08b5e6a111014f50be5b549dc61c04bd", + "47cb28f509c648a1a435b946bfc07518", + "541c0af07fc64fcfabaa49cd90ccacd2", + "7df715d2ab2d45adb6cf04e1b908fe34", + "9df76c111df140c3b7dfadb724aae88f", + "43f1996def8b4fca9ef92d15e935f1ba", + "1cea69ccb7ab49eab6b3ceccc60f846b", + "b8b4d2ec394547cc86dcfe1eddaf0402", + "579c2d34818e4ff0ba157532d81edfb7", + "08ce7a7c160f48488a1ccfff9e52fc19", + "289c3d37c529432d9f2d4ee502b427b5", + "634f94c13ef74971a26f4988ade714fa", + "55eb8ffb95564d25acb8b40d2ac86b0c", + "f935b17bb46649b5a81733fb0e5529ab", + "1ee82a5c2acc4c7fb0c63ddbb30b471c", + "67a7158ed55842d38aa55392ab1d3744", + "812642ecbb744904a74c1dbcf414cea9", + "c38ea535ff6e4d60a772700d1667c7c1", + "5b68d66d5ceb473eaf8e45a979e58e8f", + "1f6ef9a762f841f4acf9fe8edd589b2b", + "6eabe0cb30a142f2b79185efb52f6bb0", + "a05042c291aa4e1e9bb4f09be3d9f806", + "3f9981ff162245f49f533d90c0100a9c", + "531cde6e3d8f44009ab3480338bb316e", + "8ae64abd8d234c218a8fb4e92a059377", + "640f95344552481aa56d9d17398a9b45", + "3fcaf29e93bc4f0ea5293b761fbe9194", + "69bd8895c8f948c7b879b1c869539334", + "61c6494ff4fb4f7a888e3129ac641df4", + "7243419b29bc471fa4a8ef56d6041f47", + "a4b4fdbd7d5648a1ab7850e2f81ead15" + ] + }, + "id": "vIp69-KLrLF8", + "outputId": "27117ccf-b5ca-4906-c532-f23bd26f65dc" }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/usr/local/lib/python3.10/dist-packages/huggingface_hub/utils/_token.py:89: UserWarning: \n", + "The secret `HF_TOKEN` does not exist in your Colab secrets.\n", + "To authenticate with the Hugging Face Hub, create a token in your settings tab (https://huggingface.co/settings/tokens), set it as secret in your Google Colab and restart your session.\n", + "You will be able to reuse this secret in all of your notebooks.\n", + "Please note that authentication is recommended but still optional to access public models or datasets.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "548aee36a23840da8d2d9112c1a126e4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "config.json: 0%| | 0.00/269 [00:00" - ], "text/html": [ "\n", "\n" + ], + "text/plain": [ + "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "display_data", "data": { - "text/plain": [ - "Textarea(value='', description='Variant String:', layout=Layout(height='100px', width='500px'), placeholder='[…" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "9d004e2783e54df7a8dca1952ec2434d", "version_major": 2, - "version_minor": 0, - "model_id": "2e1b8d20f17b4ef584c853fd4a99bf4b" - } + "version_minor": 0 + }, + "text/plain": [ + "Textarea(value='', description='Variant String:', layout=Layout(height='100px', width='500px'), placeholder='[…" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ], "source": [ "# @title Variant text input\n", + "# @markdown The placehold variants below use 0-based indexing.\n", "variants_string = \"\"\"[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n", "[\"T13P,T33F\"]\"\"\"\n", "style = {'description_width':'initial'}\n", @@ -360,35 +477,35 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 9, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 49, "referenced_widgets": [ - "18ee47ab60e047bd8881c70e1999438f", - "5ddecf2c18394ec2bda2e38999d2b1ae", - "429005aabdfa4724af48b83a45bf1868" + "7b4e21e8ad294346b7552f231dee95b4", + "5141f5b94903473c9e89d2ec2ed8e5c4", + "a03c2859b511486da91a88babee36f63" ] }, "id": "8TLYi6orHN_8", - "outputId": "e9b214fa-534f-4088-df0b-49ab6d6da89f" + "outputId": "d6a92501-fa48-4e4c-fe90-6612a5cd57a1" }, "outputs": [ { - "output_type": "display_data", "data": { - "text/plain": [ - "FileUpload(value={}, accept='.json, .txt', description='Upload')" - ], "application/vnd.jupyter.widget-view+json": { + "model_id": "7b4e21e8ad294346b7552f231dee95b4", "version_major": 2, - "version_minor": 0, - "model_id": "18ee47ab60e047bd8881c70e1999438f" - } + "version_minor": 0 + }, + "text/plain": [ + "FileUpload(value={}, accept='.json, .txt', description='Upload')" + ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } ], "source": [ @@ -415,19 +532,19 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 10, "metadata": { "cellView": "form", "colab": { "base_uri": "https://localhost:8080/" }, "id": "mASfltPUrLGI", - "outputId": "36dba643-0610-4632-d446-2df66c9bf99c" + "outputId": "d0ff24de-5f1d-44d9-9eca-010f6fdebe91" }, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Using variant placeholder\n" ] @@ -459,7 +576,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 11, "metadata": { "cellView": "form", "id": "ecLAU9IOrLGK" @@ -484,7 +601,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 12, "metadata": { "cellView": "form", "id": "th1JyojWrLGN" @@ -519,37 +636,36 @@ " output.append({\n", " \"wt\": wildtype,\n", " \"variants\": variant,\n", - " \"logits\": predictions.tolist()\n", + " \"output\": predictions.tolist()\n", " })" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 13, "metadata": { + "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 300 }, "id": "J5XJ-4memIYp", - "outputId": "5e031353-3de6-4637-f0cf-94c728e9b65f" + "outputId": "982a13f1-6434-4ea8-ce68-8664b94c4ae0" }, "outputs": [ { - "output_type": "display_data", "data": { + "application/javascript": "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})", "text/plain": [ "" - ], - "application/javascript": [ - "google.colab.output.setIframeHeight(0, true, {maxHeight: 300})" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" }, { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "[\n", " {\n", @@ -559,177 +675,177 @@ " \"V28L,F51A\",\n", " \"T17P,V28L,F51A,T54F\"\n", " ],\n", - " \"logits\": [\n", + " \"output\": [\n", " [\n", - " 0.6590991020202637,\n", - " -0.08049693703651428,\n", - " 0.11373624205589294,\n", - " 1.4331327676773071,\n", - " -0.003976300358772278,\n", - " 0.16853787004947662,\n", - " 0.5145285129547119,\n", - " -1.1548832654953003,\n", - " -0.20571443438529968,\n", - " 2.667442560195923,\n", - " 0.41927337646484375,\n", - " 0.7023993134498596,\n", - " -0.6217738389968872,\n", - " 1.088243007659912,\n", - " -0.2892734110355377,\n", - " 1.396775722503662,\n", - " 0.6249127388000488,\n", - " -0.8152581453323364,\n", - " -0.25194138288497925,\n", - " 0.2249372899532318,\n", - " 0.7511525750160217,\n", - " 0.9799940586090088,\n", - " 0.1690274327993393,\n", - " 1.3717353343963623,\n", - " -0.07415583729743958,\n", - " 0.8511269092559814,\n", - " -0.4129708707332611,\n", - " -0.04580826312303543,\n", - " -0.5695468187332153,\n", - " 0.4530905783176422,\n", - " 0.3971884846687317,\n", - " 0.30440178513526917,\n", - " -0.28599846363067627,\n", - " -0.4856437146663666,\n", - " 1.1446493864059448,\n", - " 0.4548720121383667,\n", - " 1.495203971862793,\n", - " 0.05855285003781319,\n", - " -1.2672133445739746,\n", - " 0.9071683883666992,\n", - " 1.0979468822479248,\n", - " 0.39718329906463623,\n", - " -1.2884514331817627,\n", - " 0.7822027206420898,\n", - " 1.424137830734253,\n", - " 0.16050660610198975,\n", - " -0.47188788652420044,\n", - " -0.3807096481323242,\n", - " 1.3630346059799194,\n", - " 0.7026631832122803,\n", - " -1.1909109354019165,\n", - " 2.3238673210144043,\n", - " -0.005734764039516449,\n", - " 2.646303653717041,\n", - " -0.1562235802412033\n", + " 0.07013243436813354,\n", + " -0.25929510593414307,\n", + " 0.03156351298093796,\n", + " 0.7507199048995972,\n", + " -0.07624393701553345,\n", + " 0.19459080696105957,\n", + " 0.4965912103652954,\n", + " -1.2189791202545166,\n", + " 0.047027163207530975,\n", + " 2.024402618408203,\n", + " 0.652029275894165,\n", + " 0.38363683223724365,\n", + " -0.29057905077934265,\n", + " 0.889313280582428,\n", + " -0.19636523723602295,\n", + " 0.82305508852005,\n", + " 0.2896294891834259,\n", + " -0.6637641191482544,\n", + " -0.39318302273750305,\n", + " 0.3603857457637787,\n", + " 0.857086181640625,\n", + " 0.9503828287124634,\n", + " 0.3519744873046875,\n", + " 1.4875739812850952,\n", + " 0.10600201040506363,\n", + " 0.33237022161483765,\n", + " -0.3101063072681427,\n", + " -0.2387685775756836,\n", + " -0.5087016224861145,\n", + " 0.686012327671051,\n", + " 0.4524794816970825,\n", + " 0.20570813119411469,\n", + " 0.30475038290023804,\n", + " -0.31177929043769836,\n", + " 0.9250588417053223,\n", + " 0.6042543649673462,\n", + " 1.1186459064483643,\n", + " 0.03992972895503044,\n", + " -0.8309147357940674,\n", + " 0.9451456665992737,\n", + " 1.0041853189468384,\n", + " 0.4524748921394348,\n", + " -0.9685558080673218,\n", + " 0.49829766154289246,\n", + " 1.1165390014648438,\n", + " 0.7435593605041504,\n", + " -0.5233420133590698,\n", + " -0.5309135913848877,\n", + " 2.0981578826904297,\n", + " 0.552436351776123,\n", + " -1.0519232749938965,\n", + " 2.288227081298828,\n", + " 0.01622585952281952,\n", + " 1.7331675291061401,\n", + " -0.1840410679578781\n", " ],\n", " [\n", - " 0.1514986753463745,\n", - " 1.401354432106018,\n", - " 0.3517235517501831,\n", - " -0.8150630593299866,\n", - " -0.523166298866272,\n", - " -0.3630932569503784,\n", - " -0.4683886468410492,\n", - " 0.17266114056110382,\n", - " -0.23543331027030945,\n", - " -0.5443284511566162,\n", - " 0.21576863527297974,\n", - " -0.9783605933189392,\n", - " 1.1902419328689575,\n", - " 0.05040577054023743,\n", - " -0.5202329754829407,\n", - " -0.16423140466213226,\n", - " -0.29233694076538086,\n", - " -0.38901495933532715,\n", - " -0.5652655959129333,\n", - " -1.5913454294204712,\n", - " -0.7642431259155273,\n", - " -1.5816686153411865,\n", - " -0.8396549224853516,\n", - " -1.3265753984451294,\n", - " 0.17883414030075073,\n", - " 0.576181948184967,\n", - " 0.5685380697250366,\n", - " 0.5376473665237427,\n", - " -0.3115624189376831,\n", - " 0.3725539445877075,\n", - " 0.8384069800376892,\n", - " 0.1913319230079651,\n", - " -0.8014903664588928,\n", - " -0.007907867431640625,\n", - " -0.5338054299354553,\n", - " -0.6474889516830444,\n", - " -1.0113152265548706,\n", - " 0.02648647502064705,\n", - " -0.10224349051713943,\n", - " -1.072929859161377,\n", - " -1.1568632125854492,\n", - " 0.8384029269218445,\n", - " -1.3579269647598267,\n", - " -0.5934878587722778,\n", - " 0.13653478026390076,\n", - " -0.23295338451862335,\n", - " 0.02338385581970215,\n", - " -0.2941679060459137,\n", - " 0.24144020676612854,\n", - " 0.1747855842113495,\n", - " -0.014873862266540527,\n", - " 0.20355601608753204,\n", - " -0.003633161075413227,\n", - " 0.5389085412025452,\n", - " -0.16214129328727722\n", + " 0.08126264810562134,\n", + " 1.445512056350708,\n", + " 0.3407595753669739,\n", + " -0.8155512809753418,\n", + " -0.6581068634986877,\n", + " -0.28225141763687134,\n", + " -0.43325313925743103,\n", + " 0.014442211017012596,\n", + " -0.16074422001838684,\n", + " -0.595990777015686,\n", + " -0.01838766783475876,\n", + " -0.9363240003585815,\n", + " 1.200121521949768,\n", + " 0.10803645849227905,\n", + " -0.47195640206336975,\n", + " -0.15199805796146393,\n", + " -0.2927914261817932,\n", + " -0.40319469571113586,\n", + " -0.5474604964256287,\n", + " -1.711698293685913,\n", + " -0.697638988494873,\n", + " -1.560241460800171,\n", + " -0.7673114538192749,\n", + " -1.1705756187438965,\n", + " 0.45397740602493286,\n", + " 0.5323038697242737,\n", + " 0.6842557787895203,\n", + " 0.37687546014785767,\n", + " -0.377780944108963,\n", + " 0.451775461435318,\n", + " 0.7726845741271973,\n", + " 0.17020709812641144,\n", + " -0.674484372138977,\n", + " 0.18455049395561218,\n", + " -0.5841971635818481,\n", + " -0.5465129613876343,\n", + " -0.9710506796836853,\n", + " 0.015543186105787754,\n", + " -0.1828489601612091,\n", + " -1.1787317991256714,\n", + " -1.264413833618164,\n", + " 0.7726802825927734,\n", + " -0.9820785522460938,\n", + " -0.6351808905601501,\n", + " -0.030753612518310547,\n", + " -0.04128456115722656,\n", + " -0.17912821471691132,\n", + " -0.3816293478012085,\n", + " 0.10558390617370605,\n", + " -0.049853961914777756,\n", + " -0.20711421966552734,\n", + " 0.2800188660621643,\n", + " 0.00046062562614679337,\n", + " 0.5665276050567627,\n", + " -0.15274114906787872\n", " ],\n", " [\n", - " 1.0924522876739502,\n", - " 1.3691527843475342,\n", - " -0.07067716866731644,\n", - " 1.1789993047714233,\n", - " -0.7767326831817627,\n", - " -0.25737613439559937,\n", - " 0.20370811223983765,\n", - " -1.0038195848464966,\n", - " 0.12055148929357529,\n", - " 2.332602024078369,\n", - " 0.7964164614677429,\n", - " 0.5360543727874756,\n", - " -0.13795414566993713,\n", - " 1.0176711082458496,\n", - " -0.3136840760707855,\n", - " 0.9249329566955566,\n", - " 0.537727952003479,\n", - " -1.1812560558319092,\n", - " -0.7269535064697266,\n", - " -0.76736980676651,\n", - " 0.11708268523216248,\n", - " -0.9698691368103027,\n", - " -0.5797880291938782,\n", - " -0.14410574734210968,\n", - " 0.19867916405200958,\n", - " 0.7335465550422668,\n", - " 0.08814100176095963,\n", - " 0.6794081330299377,\n", - " -0.08508408069610596,\n", - " 0.6086207628250122,\n", - " 1.1933220624923706,\n", - " -0.2659488916397095,\n", - " -0.4580877423286438,\n", - " -0.24715319275856018,\n", - " 0.4782482981681824,\n", - " -0.34979870915412903,\n", - " -0.2117306888103485,\n", - " -0.07547205686569214,\n", - " -0.46878135204315186,\n", - " 0.46530741453170776,\n", - " 0.46666836738586426,\n", - " 1.193317174911499,\n", - " -2.3628315925598145,\n", - " 0.7037661075592041,\n", - " 2.0700290203094482,\n", - " 0.49032771587371826,\n", - " 0.7943968772888184,\n", - " 0.18035945296287537,\n", - " 2.224592685699463,\n", - " 1.2325092554092407,\n", - " -0.8344841003417969,\n", - " 1.5976241827011108,\n", - " 0.0013084327802062035,\n", - " 2.0907530784606934,\n", - " -0.18517836928367615\n", + " 1.2070168256759644,\n", + " 1.7057719230651855,\n", + " -0.09893297404050827,\n", + " 1.4028812646865845,\n", + " -0.5031474828720093,\n", + " -0.1666990965604782,\n", + " 0.14461153745651245,\n", + " -1.1639573574066162,\n", + " -0.3492702841758728,\n", + " 2.2343969345092773,\n", + " 0.782096803188324,\n", + " 0.08824858069419861,\n", + " -0.30225202441215515,\n", + " 0.9438788294792175,\n", + " -0.34925132989883423,\n", + " 0.9428834915161133,\n", + " 0.6026463508605957,\n", + " -1.0658704042434692,\n", + " -0.4869558811187744,\n", + " -1.143844723701477,\n", + " 0.18776728212833405,\n", + " -1.3262150287628174,\n", + " -0.9022694826126099,\n", + " -0.0188913457095623,\n", + " 0.02201986312866211,\n", + " 0.7734603881835938,\n", + " 0.014177754521369934,\n", + " 0.5803621411323547,\n", + " 0.058175165206193924,\n", + " 0.7798131704330444,\n", + " 1.2709546089172363,\n", + " -0.09427222609519958,\n", + " -0.7404829263687134,\n", + " -0.44868460297584534,\n", + " 0.6765958666801453,\n", + " -0.32317063212394714,\n", + " 0.19626344740390778,\n", + " -0.061478253453969955,\n", + " -0.5555139183998108,\n", + " 0.22458764910697937,\n", + " 0.2969154417514801,\n", + " 1.2709496021270752,\n", + " -2.17531681060791,\n", + " 0.6555665731430054,\n", + " 2.507157802581787,\n", + " 0.3506653308868408,\n", + " 0.7168694734573364,\n", + " 0.04246610403060913,\n", + " 2.134085178375244,\n", + " 1.2071470022201538,\n", + " -0.540690541267395,\n", + " 2.7881016731262207,\n", + " -0.0013065459206700325,\n", + " 2.872316360473633,\n", + " -0.18022766709327698\n", " ]\n", " ]\n", " },\n", @@ -738,63 +854,63 @@ " \"variants\": [\n", " \"T13P,T33F\"\n", " ],\n", - " \"logits\": [\n", + " \"output\": [\n", " [\n", - " 5.892396926879883,\n", - " -0.49729329347610474,\n", - " 3.4404735565185547,\n", - " 1.4037028551101685,\n", - " 1.4926042556762695,\n", - " 0.5995145440101624,\n", - " 5.144721984863281,\n", - " -0.8868793845176697,\n", - " -0.5772048830986023,\n", - " 2.4866859912872314,\n", - " -0.8809884190559387,\n", - " 1.0559413433074951,\n", - " -1.0544968843460083,\n", - " 8.170550346374512,\n", - " 2.298809766769409,\n", - " 4.560779571533203,\n", - " 3.909329652786255,\n", - " -0.524370551109314,\n", - " -0.5766317844390869,\n", - " 0.5325241088867188,\n", - " 0.4633113741874695,\n", - " 1.8912310600280762,\n", - " -1.1106513738632202,\n", - " 3.052121639251709,\n", - " -2.182252883911133,\n", - " -1.3615329265594482,\n", - " -0.14913541078567505,\n", - " 0.46431827545166016,\n", - " 0.07554009556770325,\n", - " 0.5355638265609741,\n", - " 0.9300331473350525,\n", - " -1.5641148090362549,\n", - " -0.07960118353366852,\n", - " -2.1044697761535645,\n", - " -1.0663528442382812,\n", - " -1.3057321310043335,\n", - " 1.3563634157180786,\n", - " 0.04978596419095993,\n", - " -0.8320205807685852,\n", - " 1.592291235923767,\n", - " 1.6624232530593872,\n", - " 0.9300246834754944,\n", - " -0.8972591161727905,\n", - " 0.9684799909591675,\n", - " 0.7739569544792175,\n", - " 1.801008939743042,\n", - " 1.642001986503601,\n", - " -0.7531395554542542,\n", - " 3.081038475036621,\n", - " -0.7239490747451782,\n", - " 1.1065503358840942,\n", - " 1.1402804851531982,\n", - " -0.03098512813448906,\n", - " 0.33966264128685,\n", - " 0.5207974314689636\n", + " 5.645543098449707,\n", + " -0.08823452889919281,\n", + " 3.270817518234253,\n", + " 1.2460161447525024,\n", + " 1.3037234544754028,\n", + " 0.5322443246841431,\n", + " 4.857309818267822,\n", + " -1.1067686080932617,\n", + " -0.6436038613319397,\n", + " 1.9419636726379395,\n", + " -0.8911130428314209,\n", + " 0.652341902256012,\n", + " -0.7837158441543579,\n", + " 9.617301940917969,\n", + " 2.1150782108306885,\n", + " 5.2092108726501465,\n", + " 2.7020974159240723,\n", + " -0.5816158652305603,\n", + " -0.5514440536499023,\n", + " 0.43818673491477966,\n", + " 0.4274188280105591,\n", + " 1.6742618083953857,\n", + " -0.8721922636032104,\n", + " 2.444389820098877,\n", + " -1.9845408201217651,\n", + " -1.1729459762573242,\n", + " -0.4310912489891052,\n", + " 0.5365148186683655,\n", + " 0.08791925013065338,\n", + " 0.2855781018733978,\n", + " 0.7514391541481018,\n", + " -0.9945945739746094,\n", + " -0.01072685420513153,\n", + " -2.4255361557006836,\n", + " -0.7554265260696411,\n", + " -1.6911653280258179,\n", + " 1.3066627979278564,\n", + " 0.041956719011068344,\n", + " -0.8304670453071594,\n", + " 1.5064003467559814,\n", + " 1.612711787223816,\n", + " 0.7514318823814392,\n", + " -1.3307963609695435,\n", + " 0.3869069516658783,\n", + " 0.6399444341659546,\n", + " 1.8638325929641724,\n", + " 1.619768738746643,\n", + " -0.7826499938964844,\n", + " 2.801478862762451,\n", + " -0.6386407017707825,\n", + " 0.8158987760543823,\n", + " 0.967729926109314,\n", + " -0.08497878909111023,\n", + " 0.14499327540397644,\n", + " 0.13757933676242828\n", " ]\n", " ]\n", " }\n", @@ -821,7 +937,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 14, "metadata": { "cellView": "form", "id": "nYz6NRB_rLGP" @@ -858,38 +974,72 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "dfbab67b2c494fb8ab0237a97f9738e0": { + "08b5e6a111014f50be5b549dc61c04bd": { "model_module": "@jupyter-widgets/controls", - "model_name": "FileUploadModel", "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", "state": { - "_counter": 0, "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FileUploadModel", + "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "FileUploadView", - "accept": ".pdb", - "button_style": "", - "data": [], - "description": "Upload", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", "description_tooltip": null, - "disabled": false, - "error": "", - "icon": "upload", - "layout": "IPY_MODEL_200ab63cae634eddaa992fd64b35c0ac", - "metadata": [], - "multiple": false, - "style": "IPY_MODEL_59c5e99e773a4ab39eb9e8604814d36c" + "layout": "IPY_MODEL_43f1996def8b4fca9ef92d15e935f1ba", + "max": 269, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_1cea69ccb7ab49eab6b3ceccc60f846b", + "value": 269 + } + }, + "08ce7a7c160f48488a1ccfff9e52fc19": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_289c3d37c529432d9f2d4ee502b427b5", + "IPY_MODEL_634f94c13ef74971a26f4988ade714fa", + "IPY_MODEL_55eb8ffb95564d25acb8b40d2ac86b0c" + ], + "layout": "IPY_MODEL_f935b17bb46649b5a81733fb0e5529ab" } }, - "200ab63cae634eddaa992fd64b35c0ac": { + "1cea69ccb7ab49eab6b3ceccc60f846b": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "1ee82a5c2acc4c7fb0c63ddbb30b471c": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -938,52 +1088,85 @@ "width": null } }, - "59c5e99e773a4ab39eb9e8604814d36c": { + "1f6ef9a762f841f4acf9fe8edd589b2b": { "model_module": "@jupyter-widgets/controls", - "model_name": "ButtonStyleModel", "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", + "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", - "button_color": null, - "font_weight": "" + "description_width": "" } }, - "2e1b8d20f17b4ef584c853fd4a99bf4b": { + "289c3d37c529432d9f2d4ee502b427b5": { "model_module": "@jupyter-widgets/controls", - "model_name": "TextareaModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_dom_classes": [ - "variant_text_area" - ], + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "TextareaModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "TextareaView", - "continuous_update": true, - "description": "Variant String:", + "_view_name": "HTMLView", + "description": "", "description_tooltip": null, - "disabled": false, - "layout": "IPY_MODEL_a6ebd99c816b4e58be247da685da9902", - "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", - "rows": null, - "style": "IPY_MODEL_32cd7130f6ba44fa85e4ad6f0aa492f4", - "value": "" + "layout": "IPY_MODEL_1ee82a5c2acc4c7fb0c63ddbb30b471c", + "placeholder": "​", + "style": "IPY_MODEL_67a7158ed55842d38aa55392ab1d3744", + "value": "huggingface_wrapper.py: 100%" + } + }, + "3f9981ff162245f49f533d90c0100a9c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_69bd8895c8f948c7b879b1c869539334", + "max": 176, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_61c6494ff4fb4f7a888e3129ac641df4", + "value": 176 + } + }, + "3fcaf29e93bc4f0ea5293b761fbe9194": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" } }, - "a6ebd99c816b4e58be247da685da9902": { + "43f1996def8b4fca9ef92d15e935f1ba": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1010,7 +1193,7 @@ "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, - "height": "100px", + "height": null, "justify_content": null, "justify_items": null, "left": null, @@ -1029,56 +1212,107 @@ "right": null, "top": null, "visibility": null, - "width": "500px" + "width": null } }, - "32cd7130f6ba44fa85e4ad6f0aa492f4": { + "47cb28f509c648a1a435b946bfc07518": { "model_module": "@jupyter-widgets/controls", - "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "DescriptionStyleModel", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_b8b4d2ec394547cc86dcfe1eddaf0402", + "placeholder": "​", + "style": "IPY_MODEL_579c2d34818e4ff0ba157532d81edfb7", + "value": " 269/269 [00:00<00:00, 3.64kB/s]" + } + }, + "5141f5b94903473c9e89d2ec2ed8e5c4": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "description_width": "initial" + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } }, - "18ee47ab60e047bd8881c70e1999438f": { + "531cde6e3d8f44009ab3480338bb316e": { "model_module": "@jupyter-widgets/controls", - "model_name": "FileUploadModel", "model_module_version": "1.5.0", + "model_name": "HTMLModel", "state": { - "_counter": 0, "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "FileUploadModel", + "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", - "_view_name": "FileUploadView", - "accept": ".json, .txt", - "button_style": "", - "data": [], - "description": "Upload", + "_view_name": "HTMLView", + "description": "", "description_tooltip": null, - "disabled": false, - "error": "", - "icon": "upload", - "layout": "IPY_MODEL_5ddecf2c18394ec2bda2e38999d2b1ae", - "metadata": [], - "multiple": false, - "style": "IPY_MODEL_429005aabdfa4724af48b83a45bf1868" + "layout": "IPY_MODEL_7243419b29bc471fa4a8ef56d6041f47", + "placeholder": "​", + "style": "IPY_MODEL_a4b4fdbd7d5648a1ab7850e2f81ead15", + "value": " 176/176 [00:00<00:00, 3.73kB/s]" } }, - "5ddecf2c18394ec2bda2e38999d2b1ae": { + "541c0af07fc64fcfabaa49cd90ccacd2": { "model_module": "@jupyter-widgets/base", - "model_name": "LayoutModel", "model_module_version": "1.2.0", + "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", @@ -1127,20 +1361,928 @@ "width": null } }, - "429005aabdfa4724af48b83a45bf1868": { + "548aee36a23840da8d2d9112c1a126e4": { "model_module": "@jupyter-widgets/controls", - "model_name": "ButtonStyleModel", "model_module_version": "1.5.0", + "model_name": "HBoxModel", "state": { + "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", - "_model_name": "ButtonStyleModel", + "_model_name": "HBoxModel", "_view_count": null, - "_view_module": "@jupyter-widgets/base", - "_view_module_version": "1.2.0", - "_view_name": "StyleView", - "button_color": null, - "font_weight": "" + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_9875bd75c19140e8982cfc83ab405980", + "IPY_MODEL_08b5e6a111014f50be5b549dc61c04bd", + "IPY_MODEL_47cb28f509c648a1a435b946bfc07518" + ], + "layout": "IPY_MODEL_541c0af07fc64fcfabaa49cd90ccacd2" + } + }, + "55eb8ffb95564d25acb8b40d2ac86b0c": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_5b68d66d5ceb473eaf8e45a979e58e8f", + "placeholder": "​", + "style": "IPY_MODEL_1f6ef9a762f841f4acf9fe8edd589b2b", + "value": " 95.9k/95.9k [00:00<00:00, 1.46MB/s]" + } + }, + "579c2d34818e4ff0ba157532d81edfb7": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "5b68d66d5ceb473eaf8e45a979e58e8f": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "61c6494ff4fb4f7a888e3129ac641df4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "634f94c13ef74971a26f4988ade714fa": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FloatProgressModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FloatProgressModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "ProgressView", + "bar_style": "success", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_812642ecbb744904a74c1dbcf414cea9", + "max": 95901, + "min": 0, + "orientation": "horizontal", + "style": "IPY_MODEL_c38ea535ff6e4d60a772700d1667c7c1", + "value": 95901 + } + }, + "640f95344552481aa56d9d17398a9b45": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "67a7158ed55842d38aa55392ab1d3744": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "69bd8895c8f948c7b879b1c869539334": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "6eabe0cb30a142f2b79185efb52f6bb0": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HBoxModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HBoxModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HBoxView", + "box_style": "", + "children": [ + "IPY_MODEL_a05042c291aa4e1e9bb4f09be3d9f806", + "IPY_MODEL_3f9981ff162245f49f533d90c0100a9c", + "IPY_MODEL_531cde6e3d8f44009ab3480338bb316e" + ], + "layout": "IPY_MODEL_8ae64abd8d234c218a8fb4e92a059377" + } + }, + "7243419b29bc471fa4a8ef56d6041f47": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "7b4e21e8ad294346b7552f231dee95b4": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FileUploadModel", + "state": { + "_counter": 0, + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FileUploadModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "FileUploadView", + "accept": ".json, .txt", + "button_style": "", + "data": [], + "description": "Upload", + "description_tooltip": null, + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_5141f5b94903473c9e89d2ec2ed8e5c4", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_a03c2859b511486da91a88babee36f63" + } + }, + "7df715d2ab2d45adb6cf04e1b908fe34": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "812642ecbb744904a74c1dbcf414cea9": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "8131214e739d4fea923d9a4b61bc0a8e": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": "100px", + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": "500px" + } + }, + "88183c92883b4c9787ecaf63b1f73f6e": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "FileUploadModel", + "state": { + "_counter": 0, + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "FileUploadModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "FileUploadView", + "accept": ".pdb", + "button_style": "", + "data": [], + "description": "Upload", + "description_tooltip": null, + "disabled": false, + "error": "", + "icon": "upload", + "layout": "IPY_MODEL_974500e54aa5465fb97c17152439918a", + "metadata": [], + "multiple": false, + "style": "IPY_MODEL_e3d473ff87114b4aafb71269df884892" + } + }, + "8ae64abd8d234c218a8fb4e92a059377": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "974500e54aa5465fb97c17152439918a": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "9875bd75c19140e8982cfc83ab405980": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_7df715d2ab2d45adb6cf04e1b908fe34", + "placeholder": "​", + "style": "IPY_MODEL_9df76c111df140c3b7dfadb724aae88f", + "value": "config.json: 100%" + } + }, + "9d004e2783e54df7a8dca1952ec2434d": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "TextareaModel", + "state": { + "_dom_classes": [ + "variant_text_area" + ], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "TextareaModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "TextareaView", + "continuous_update": true, + "description": "Variant String:", + "description_tooltip": null, + "disabled": false, + "layout": "IPY_MODEL_8131214e739d4fea923d9a4b61bc0a8e", + "placeholder": "[\"T17P,T54F\", \"V28L,F51A\", \"T17P,V28L,F51A,T54F\"]\n[\"T13P,T33F\"]", + "rows": null, + "style": "IPY_MODEL_ea799d8361454d628d2dcdb09c6b18a8", + "value": "" + } + }, + "9df76c111df140c3b7dfadb724aae88f": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "a03c2859b511486da91a88babee36f63": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ButtonStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "a05042c291aa4e1e9bb4f09be3d9f806": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "HTMLModel", + "state": { + "_dom_classes": [], + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "HTMLModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/controls", + "_view_module_version": "1.5.0", + "_view_name": "HTMLView", + "description": "", + "description_tooltip": null, + "layout": "IPY_MODEL_640f95344552481aa56d9d17398a9b45", + "placeholder": "​", + "style": "IPY_MODEL_3fcaf29e93bc4f0ea5293b761fbe9194", + "value": "model.safetensors: 100%" + } + }, + "a4b4fdbd7d5648a1ab7850e2f81ead15": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "" + } + }, + "b8b4d2ec394547cc86dcfe1eddaf0402": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null + } + }, + "c38ea535ff6e4d60a772700d1667c7c1": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ProgressStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ProgressStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "bar_color": null, + "description_width": "" + } + }, + "e3d473ff87114b4aafb71269df884892": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "ButtonStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "ButtonStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "button_color": null, + "font_weight": "" + } + }, + "ea799d8361454d628d2dcdb09c6b18a8": { + "model_module": "@jupyter-widgets/controls", + "model_module_version": "1.5.0", + "model_name": "DescriptionStyleModel", + "state": { + "_model_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_model_name": "DescriptionStyleModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "StyleView", + "description_width": "initial" + } + }, + "f935b17bb46649b5a81733fb0e5529ab": { + "model_module": "@jupyter-widgets/base", + "model_module_version": "1.2.0", + "model_name": "LayoutModel", + "state": { + "_model_module": "@jupyter-widgets/base", + "_model_module_version": "1.2.0", + "_model_name": "LayoutModel", + "_view_count": null, + "_view_module": "@jupyter-widgets/base", + "_view_module_version": "1.2.0", + "_view_name": "LayoutView", + "align_content": null, + "align_items": null, + "align_self": null, + "border": null, + "bottom": null, + "display": null, + "flex": null, + "flex_flow": null, + "grid_area": null, + "grid_auto_columns": null, + "grid_auto_flow": null, + "grid_auto_rows": null, + "grid_column": null, + "grid_gap": null, + "grid_row": null, + "grid_template_areas": null, + "grid_template_columns": null, + "grid_template_rows": null, + "height": null, + "justify_content": null, + "justify_items": null, + "left": null, + "margin": null, + "max_height": null, + "max_width": null, + "min_height": null, + "min_width": null, + "object_fit": null, + "object_position": null, + "order": null, + "overflow": null, + "overflow_x": null, + "overflow_y": null, + "padding": null, + "right": null, + "top": null, + "visibility": null, + "width": null } } } @@ -1148,4 +2290,4 @@ }, "nbformat": 4, "nbformat_minor": 0 -} \ No newline at end of file +}