-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathERpy.py
318 lines (286 loc) · 9.58 KB
/
ERpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
"""
ERpy binding to ER
"""
#_______________________________________________________________________________
import ER
import numpy
zeros = numpy.zeros
import pylab
import ER_c
#_______________________________________________________________________________
#_______________________________________________________________________________
def POLRT(A):
"""
POLRT
p.35
"""
XCOF = A
COF = XCOF.copy()
M = XCOF.size - 1
ROOTR = numpy.zeros(M)
ROOTI = numpy.zeros(M)
IER = 0
(COF, ROOTR, ROOTI, IER) = ER.POLRT(XCOF, COF, M, ROOTR, ROOTI, IER)
return (ROOTR, ROOTI, IER)
#_______________________________________________________________________________
#_______________________________________________________________________________
def POMAIN(N, LA, A):
"""
POMAIN
p. 162
"""
(ADJ, P, DET, S) = ER.POMAIN(N, LA, A, [], [], [], [])
return (ADJ, P, DET)
#_______________________________________________________________________________
#_______________________________________________________________________________
def POMAEVAL(N, LA, A, z0):
"""
eval polynomial matrix at z0
"""
z0 = numpy.complex(z0)
P = numpy.zeros(N * N, "complex")
for I in range(N):
for J in range(N):
for K in range(LA):
ZK = z0 ** K
IJ = I + J * N
IJK = I + J * N + K * N * N
P[IJ] += A[IJK] * ZK
return P
#_______________________________________________________________________________
#_______________________________________________________________________________
def WIENER(N, LX, X, M, LZ, Z, LR, LW, FLOOR):
"""
WIENER filter
(F, E, Y) = WIENER(N, LX, X, M, LZ, Z, LR, LW, FLOOR)
N: number of input channels to filter >= 1
LX: length of input time series
X: N-channel desired input time series
array 1d in multiplexed mode:
[x1(1), x2(1), ..., xN(1), x1(2), x2(2), ..., xN(2), ..., xN(LX)]
M: number of output channels from filter Z >= 1
LZ: length of desired output time series
Z: M-channel desired output time series
"""
LF = M * N * LR
F = numpy.array(LF)
E = 0
LY = 10
Y = numpy.array(LY)
LS = N * N * (5 * LR + 6) + M * N * (LR + 2) + 2 * M * M
S = numpy.array(LS)
(LF, F, E, LY, Y, S) = ER.WIENER_1(N, LX, X, M, LZ, Z, LR, LW, FLOOR, LF, F, E, LY, Y, S)
return (F, Y, E)
#_______________________________________________________________________________
#_______________________________________________________________________________
def getTraceMode(N, LX, X):
"""
get trace mode from X in multiplexed mode
Y = getTraceMode(N, LX, X)
"""
Y = numpy.empty(N * LX)
for I in range(N):
for J in range(LX):
IJ = I + J * N
JI = J + I * LX
Y[JI] = X[IJ]
return Y
MMTOTM = getTraceMode
#_______________________________________________________________________________
#_______________________________________________________________________________
def getMultiplexedMode(N, LX, X):
"""
get multiplexed mode from X in trace mode
Y = getMultiplexedMode(N, LX, X)
"""
Y = numpy.empty(N * LX)
for I in range(N):
for J in range(LX):
IJ = I + J * N
JI = J + I * LX
Y[IJ] = X[JI]
return Y
TMTOMM = getMultiplexedMode
#_______________________________________________________________________________
#_______________________________________________________________________________
def NDTOMM(X):
"""
nd array to multiplexed mode
X shape is (N, LX)
"""
(N, LX) = X.shape
Y = X.flatten()
Z = getMultiplexedMode(N, LX, Y)
return (N, LX, Z)
#_______________________________________________________________________________
#_______________________________________________________________________________
def NDTOTM(X):
"""
nd array to trace mode
X shape is (N, LX)
"""
(N, LX) = X.shape
Y = X.flatten()
return (N, LX, Y)
#_______________________________________________________________________________
#_______________________________________________________________________________
def TMTOND(N, LX, X):
"""
trace mode to nd array
"""
Y = X.reshape(N, LX)
return Y
#_______________________________________________________________________________
#_______________________________________________________________________________
def MMTOND(N, LX, X):
"""
multiplexed mode to nd array
"""
Y = getTraceMode(N, LX, X)
Z = Y.reshape(N, LX)
return Z
#_______________________________________________________________________________
#_______________________________________________________________________________
def SPIKER(B, LA):
"""
"""
LB = B.size
A = numpy.zeros(LA)
LC = LB + LA - 1
C = numpy.zeros(LC)
INDEX = 0
ERRORS = numpy.zeros(LC)
SPACE = numpy.zeros(3 * LA)
(A, LC, C, INDEX, ERRORS) = ER.SPIKER(LB, B, LA, A, LC, C, INDEX, ERRORS, SPACE)
return (A, C, INDEX, ERRORS)
#_______________________________________________________________________________
#_______________________________________________________________________________
def SHAPER(B, D, LA):
"""
"""
LB = B.size
LD = D.size
A = numpy.zeros(LA)
LC = LB + LA - 1
LCD = LC + LD - 1
C = numpy.zeros(LCD)
INDEX = 0
ERRORS = numpy.zeros(LCD)
SPACE = numpy.zeros(3 * LA)
(A, LC, C, INDEX, ERRORS, S) = ER.SHAPER(LB, B, LD, D, LA, A, LC, C, INDEX, ERRORS, SPACE)
return (A, C, INDEX, ERRORS)
#_______________________________________________________________________________
#_______________________________________________________________________________
def SHAPE(B, D, LA):
"""
"""
LB = B.size
LD = D.size
A = numpy.zeros(LA)
LC = LB + LA - 1
LCD = LC + LD - 1
C = numpy.zeros(LCD)
INDEX = 0
ASE = numpy.zeros(LCD)
SPACE = numpy.zeros(3 * LA)
(A, LC, C, ASE, SPACE) = ER.SHAPE(LB, B, LD, D, LA, A, LC, C, ASE, SPACE)
return (A, C, ASE)
#_______________________________________________________________________________
#_______________________________________________________________________________
def MACRO(X, Y, LG):
"""
MACRO multichannel cross correlation
(G, N) = MACRO(X, Y, LG)
X: (nDimX, nObsX) (N, LX)
Y: (nDimY, nObsY) (N, LY)
Output
(G, N)
"""
(N, LX, X) = NDTOTM(X)
(N, LY, Y) = NDTOTM(Y)
# print(X)
# pylab.plot(X)
G = zeros((LG * N * N))
# G = ER.MACRO(N, LX, X, LY, Y, LG, G)
G = ER_c.MACRO(N, LX, X, LY, Y, LG, G)
return (G, N)
#_______________________________________________________________________________
#_______________________________________________________________________________
def MACRO_partial(N, LG, G, I, J, K):
"""
MACRO_partial multichannel cross partial correlation
G = MACRO(X, Y, LG)
Example
LG = 4
N = 3
G = array([
1., 0.9, 0.8, 0.7, 0.2, 0.3, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.2, 0.1, 1, 0.8, 0.6, 0.4, 0.1, 0., 0., 0.,
0., 0., 0., 0., 0.2, 0.3, .4, .5, 1., 0.7, 0.4, 0.1])
GP = MACRO_partial(N, LG, G, 0, 1, 2)
print(GP)
"""
GP = numpy.zeros(LG)
for IG in range(LG):
IGIJ = IG + I * N + J * N * N
IGIK = IG + I * N + K * N * N
IGJK = IG + J * N + K * N * N
den1 = (1. - G[IGIK]) ** 0.5
den2 = (1. - G[IGJK]) ** 0.5
den = den1 * den2
num = G[IGIJ] - G[IGIK] * G[IGJK]
GP[IG] = num / den
return GP
#_______________________________________________________________________________
#_______________________________________________________________________________
def Sxx(X, L):
"""
inter spectra
$$ \Phi_{kj} (f) = C_{kj}(f) - i \, Q_{kj}(f) $$
$$ \Phi_{kj} (f) = \Phi_{jk}^{*}(f) = C_{jk}(f) + i \, Q_{kj}(f) $$
For power spectrum multiply the array by conjugate.
"""
(N, LX, X) = NDTOTM(X)
Rxx = zeros((L * N * N))
Rxx = ER.MACRO(N, LX, X, LX, X, L, Rxx)
S0 = ER.QUADCO(L, N, Rxx)
S1 = zeros((L, N, N), 'complex')
for i in range(N):
for j in range(N):
for k in range(L):
ijk = L * N * i + j * L + k
S1[k, i, j] = S0[ijk]
S = zeros((L, N, N), 'complex')
for iF in range(L):
for i in range(N):
for j in range(i, N):
if (i == j):
S[iF, i, j] = S1[iF, i, j]
else :
S[iF, i, j] = S1[iF, i, j] - complex(0, j) * S1[iF, j, i]
S[iF, j, i] = S[iF, i, j].conj()
return (S, S1, N)
#_______________________________________________________________________________
#_______________________________________________________________________________
def plot_MACRO(G, LG, NX, xt=[], xl=[], yt=[], rangeXY='', mode='oneSide'):
"""
plot_MACRO(G, LG, NX)
"""
for i in range(NX):
for j in range(NX):
JIPO = j + NX * i + 1
pylab.subplot(NX, NX, JIPO)
ZJI = j * LG + LG * NX * i
ZIJ = i * LG + LG * NX * j
Gl = G[ZIJ: ZIJ + LG][::-1]
Gr = G[ZJI: ZJI + LG]
if mode == 'oneSide':
H = pylab.r_[Gr]
else :
H = pylab.r_[Gl, Gr[1:]]
pylab.plot(H, '.-')
pylab.xticks(xt, xl)
pylab.yticks(yt, yt)
if (rangeXY != ''):
pylab.axis(rangeXY)
#_______________________________________________________________________________