-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
193 lines (157 loc) · 7.96 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import sys
import torch
import logging
import torchmetrics
from tqdm import tqdm
import multiprocessing
from datetime import datetime
import torchvision.transforms as tfm
import test
import util
import parser
import commons
import cosface_loss
import augmentations
from eigenplaces_model import eigenplaces_network
from datasets.test_dataset import TestDataset
from datasets.eigenplaces_dataset import EigenPlacesDataset
torch.backends.cudnn.benchmark = True # Provides a speedup
args = parser.parse_arguments()
start_time = datetime.now()
output_folder = f"logs/{args.save_dir}/{start_time.strftime('%Y-%m-%d_%H-%M-%S')}"
commons.make_deterministic(args.seed)
commons.setup_logging(output_folder, console="debug")
logging.info(" ".join(sys.argv))
logging.info(f"Arguments: {args}")
logging.info(f"The outputs are being saved in {output_folder}")
#### Model
model = eigenplaces_network.GeoLocalizationNet_(args.backbone, args.fc_output_dim)
logging.info(f"There are {torch.cuda.device_count()} GPUs and {multiprocessing.cpu_count()} CPUs.")
if args.resume_model is not None:
logging.debug(f"Loading model from {args.resume_model}")
model_state_dict = torch.load(args.resume_model)
model.load_state_dict(model_state_dict)
model = model.to(args.device).train()
#### Optimizer
criterion = torch.nn.CrossEntropyLoss()
model_optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
#### Datasets
groups = [EigenPlacesDataset(
args.train_dataset_folder, M=args.M, N=args.N, focal_dist=args.focal_dist,
current_group=n//2, min_images_per_class=args.min_images_per_class,
angle=[0, 90][n % 2], visualize_classes=args.visualize_classes)
for n in range(args.groups_num * 2)
]
# Each group has its own classifier, which depends on the number of classes in the group
classifiers = [cosface_loss.MarginCosineProduct(
args.fc_output_dim, len(group), s=args.s, m=args.m) for group in groups]
classifiers_optimizers = [torch.optim.Adam(classifier.parameters(), lr=args.classifiers_lr) for classifier in classifiers]
gpu_augmentation = tfm.Compose([
augmentations.DeviceAgnosticColorJitter(brightness=args.brightness,
contrast=args.contrast,
saturation=args.saturation,
hue=args.hue),
augmentations.DeviceAgnosticRandomResizedCrop([512, 512],
scale=[1-args.random_resized_crop, 1]),
tfm.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
logging.info(f"Using {len(groups)} groups")
logging.info(f"The {len(groups)} groups have respectively the following "
f"number of classes {[len(g) for g in groups]}")
logging.info(f"The {len(groups)} groups have respectively the following "
f"number of images {[g.get_images_num() for g in groups]}")
logging.info(f"There are {len(groups[0])} classes for the first group, " +
f"each epoch has {args.iterations_per_epoch} iterations " +
f"with batch_size {args.batch_size}, therefore the model sees each class (on average) " +
f"{args.iterations_per_epoch * args.batch_size / len(groups[0]):.1f} times per epoch")
val_ds = TestDataset(f"{args.val_dataset_folder}")
logging.info(f"Validation set: {val_ds}")
#### Resume
if args.resume_train:
model, model_optimizer, classifiers, classifiers_optimizers, \
best_val_recall1, start_epoch_num = \
util.resume_train(args, output_folder, model, model_optimizer,
classifiers, classifiers_optimizers)
model = model.to(args.device)
epoch_num = start_epoch_num - 1
logging.info(f"Resuming from epoch {start_epoch_num} with best R@1 {best_val_recall1:.1f} " +
f"from checkpoint {args.resume_train}")
else:
best_val_recall1 = start_epoch_num = 0
#### Train / evaluation loop
logging.info("Start training ...")
scaler = torch.cuda.amp.GradScaler()
for epoch_num in range(start_epoch_num, args.epochs_num):
#### Train
epoch_start_time = datetime.now()
def get_iterator(groups, classifiers, classifiers_optimizers, batch_size, g_num):
assert len(groups) == len(classifiers) == len(classifiers_optimizers)
classifiers[g_num] = classifiers[g_num].to(args.device)
util.move_to_device(classifiers_optimizers[g_num], args.device)
return commons.InfiniteDataLoader(groups[g_num], num_workers=args.num_workers,
batch_size=batch_size, shuffle=True,
pin_memory=(args.device == "cuda"), drop_last=True)
# Select classifier and dataloader according to epoch
current_dataset_num = (epoch_num % args.groups_num) * 2
iterators = []
for i in range(2):
iterators.append(get_iterator(groups, classifiers, classifiers_optimizers,
args.batch_size, current_dataset_num + i))
lateral_loss = torchmetrics.MeanMetric()
frontal_loss = torchmetrics.MeanMetric()
model = model.train()
for iteration in tqdm(range(args.iterations_per_epoch), ncols=100):
model_optimizer.zero_grad()
#### EigenPlace ITERATION ####
for i in range(2):
classifiers_optimizers[current_dataset_num + i].zero_grad()
images, targets, _ = next(iterators[i])
images, targets = images.to(args.device), targets.to(args.device)
with torch.cuda.amp.autocast():
images = gpu_augmentation(images)
descriptors = model(images)
output = classifiers[current_dataset_num + i](descriptors, targets)
loss = criterion(output, targets)
if i == 0:
loss *= args.lambda_lat
else:
loss *= args.lambda_front
del images, output
scaler.scale(loss).backward()
scaler.step(classifiers_optimizers[current_dataset_num + i])
if i == 0:
lateral_loss.update(loss.detach().cpu())
else:
frontal_loss.update(loss.detach().cpu())
del loss
#######################
scaler.step(model_optimizer)
scaler.update()
for i in range(2):
classifiers[current_dataset_num + i] = classifiers[current_dataset_num + i].cpu()
util.move_to_device(classifiers_optimizers[current_dataset_num + i], "cpu")
logging.debug(f"Epoch {epoch_num:02d} in {str(datetime.now() - epoch_start_time)[:-7]} - "
f"group {current_dataset_num} lateral_loss = {lateral_loss.compute():.4f} - "
f"group {current_dataset_num + 1} frontal_loss = {frontal_loss.compute():.4f}")
#### Evaluation
recalls, recalls_str = test.test(args, val_ds, model, batchify=True)
logging.info(f"Epoch {epoch_num:02d} in {str(datetime.now() - epoch_start_time)[:-7]}, {val_ds}: {recalls_str}")
is_best = recalls[0] > best_val_recall1
best_val_recall1 = max(recalls[0], best_val_recall1)
# Save checkpoint, which contains all training parameters
util.save_checkpoint({
"epoch_num": epoch_num + 1,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": model_optimizer.state_dict(),
"classifiers_state_dict": [c.state_dict() for c in classifiers],
"optimizers_state_dict": [c.state_dict() for c in classifiers_optimizers],
"best_val_recall1": best_val_recall1
}, is_best, output_folder)
logging.info(f"Trained for {epoch_num+1:02d} epochs, in total in {str(datetime.now() - start_time)[:-7]}")
#### Test best model_ on test set v1
best_model_state_dict = torch.load(f"{output_folder}/best_model.pth")
model.load_state_dict(best_model_state_dict)
test_ds = TestDataset(f"{args.test_dataset_folder}")
recalls, recalls_str = test.test(args, test_ds, model)
logging.info(f"{test_ds}: {recalls_str}")
logging.info("Experiment finished (without any errors)")