Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add REFLECT padding to convolution layer #4553

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 5 additions & 3 deletions flax/linen/linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -444,7 +444,8 @@ class _Conv(Module):
strides: an integer or a sequence of `n` integers, representing the
inter-window strides (default: 1).
padding: either the string ``'SAME'``, the string ``'VALID'``, the string
``'CIRCULAR'`` (periodic boundary conditions), or a sequence of ``n`` ``(low,
``'CIRCULAR'`` (periodic boundary conditions), the string `'REFLECT'`
(reflection across the padding boundary), or a sequence of ``n`` ``(low,
high)`` integer pairs that give the padding to apply before and after each
spatial dimension. A single int is interpreted as applying the same padding
in all dims and assign a single int in a sequence causes the same padding
Expand Down Expand Up @@ -554,7 +555,7 @@ def maybe_broadcast(
kernel_dilation = maybe_broadcast(self.kernel_dilation)

padding_lax = canonicalize_padding(self.padding, len(kernel_size))
if padding_lax == 'CIRCULAR':
if padding_lax in ('CIRCULAR', 'REFLECT'):
kernel_size_dilated = [
(k - 1) * d + 1 for k, d in zip(kernel_size, kernel_dilation)
]
Expand All @@ -564,7 +565,8 @@ def maybe_broadcast(
+ [((k - 1) // 2, k // 2) for k in kernel_size_dilated]
+ [(0, 0)]
)
inputs = jnp.pad(inputs, pads, mode='wrap')
padding_mode = {'CIRCULAR': 'wrap', 'REFLECT': 'reflect'}[padding_lax]
inputs = jnp.pad(inputs, pads, mode=padding_mode)
padding_lax = 'VALID'
elif padding_lax == 'CAUSAL':
if len(kernel_size) != 1:
Expand Down
8 changes: 5 additions & 3 deletions flax/nnx/nn/linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -584,7 +584,8 @@ class Conv(Module):
strides: an integer or a sequence of ``n`` integers, representing the
inter-window strides (default: 1).
padding: either the string ``'SAME'``, the string ``'VALID'``, the string
``'CIRCULAR'`` (periodic boundary conditions), or a sequence of ``n``
``'CIRCULAR'`` (periodic boundary conditions), the string `'REFLECT'`
(reflection across the padding boundary), or a sequence of ``n``
``(low, high)`` integer pairs that give the padding to apply before and after each
spatial dimension. A single int is interpeted as applying the same padding
in all dims and passign a single int in a sequence causes the same padding
Expand Down Expand Up @@ -720,7 +721,7 @@ def maybe_broadcast(
kernel_dilation = maybe_broadcast(self.kernel_dilation)

padding_lax = canonicalize_padding(self.padding, len(kernel_size))
if padding_lax == 'CIRCULAR':
if padding_lax in ('CIRCULAR', 'REFLECT'):
kernel_size_dilated = [
(k - 1) * d + 1 for k, d in zip(kernel_size, kernel_dilation)
]
Expand All @@ -730,7 +731,8 @@ def maybe_broadcast(
+ [((k - 1) // 2, k // 2) for k in kernel_size_dilated]
+ [(0, 0)]
)
inputs = jnp.pad(inputs, pads, mode='wrap')
padding_mode = {'CIRCULAR': 'wrap', 'REFLECT': 'reflect'}[padding_lax]
inputs = jnp.pad(inputs, pads, mode=padding_mode)
padding_lax = 'VALID'
elif padding_lax == 'CAUSAL':
if len(kernel_size) != 1:
Expand Down
53 changes: 53 additions & 0 deletions tests/linen/linen_linear_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -846,6 +846,59 @@ def test_circular_conv_local_2d_custom(self):
correct_ans = np.expand_dims(correct_ans, (0, 3))
np.testing.assert_allclose(y, correct_ans)

def test_reflect_conv_1d_custom(self):
"""Test 1d convolution with reflection padding and a stride."""
rng = dict(params=random.key(0))
x = np.arange(1, 6)
x = np.expand_dims(x, (0, 2))
kernel = np.array((1, 2, 1))
kernel = np.expand_dims(kernel, (1, 2))

conv_module = nn.Conv(
features=1,
kernel_size=(3,),
strides=(2,),
padding='REFLECT',
kernel_init=lambda *_: kernel,
bias_init=initializers.zeros,
)
y, initial_params = conv_module.init_with_output(rng, x)

self.assertEqual(initial_params['params']['kernel'].shape, (3, 1, 1))
# Compare with manually computed convolution
correct_ans = np.array((2 + 2 * 1 + 2, 2 + 2 * 3 + 4, 4 + 2 * 5 + 4))
correct_ans = np.expand_dims(correct_ans, (0, 2))
np.testing.assert_allclose(y, correct_ans)

def test_reflect_conv_2d_custom(self):
"""Test 2d convolution with reflect padding on a 3x3 example."""
rng = dict(params=random.key(0))
x = np.array(((1, 2, 3), (4, 5, 6), (7, 8, 9)))
x = np.expand_dims(x, (0, 3))
kernel = np.array(((0, 1, 0), (1, 2, 1), (0, 1, 0)))
kernel = np.expand_dims(kernel, (2, 3))

conv_module = nn.Conv(
features=1,
kernel_size=(3, 3),
padding='REFLECT',
kernel_init=lambda *_: kernel,
bias_init=initializers.zeros,
)
y, initial_params = conv_module.init_with_output(rng, x)

self.assertEqual(initial_params['params']['kernel'].shape, (3, 3, 1, 1))
# Compare with manually computed convolution
correct_ans = np.array(
(
(2 * 1 + 4 + 2 + 4 + 2, 2 * 2 + 5 + 3 + 5 + 1, 2 * 3 + 6 + 2 + 6 + 2),
(2 * 4 + 1 + 5 + 7 + 5, 2 * 5 + 2 + 6 + 8 + 4, 2 * 6 + 3 + 5 + 9 + 5),
(2 * 7 + 4 + 8 + 8 + 4, 2 * 8 + 5 + 9 + 5 + 7, 2 * 9 + 6 + 8 + 6 + 8),
)
)
correct_ans = np.expand_dims(correct_ans, (0, 3))
np.testing.assert_allclose(y, correct_ans)

def test_causal_conv1d(self):
rng = dict(params=random.key(0))
x = jnp.ones((1, 8, 4))
Expand Down
2 changes: 1 addition & 1 deletion tests/nnx/nn/conv_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
class TestConvLinenConsistency(parameterized.TestCase):
@parameterized.product(
strides=[None, (2, 3)],
padding=['VALID', 'CIRCULAR', (4, 2)],
padding=['VALID', 'CIRCULAR', 'REFLECT', (4, 2)],
input_dilation=[(2, 3)],
kernel_dilation=[(2, 3)],
feature_group_count=[3],
Expand Down