From a1da8b3dda665c3342a66dc5c3b6d901ba781967 Mon Sep 17 00:00:00 2001 From: clarkmiyamoto <96753914+clarkmiyamoto@users.noreply.github.com> Date: Thu, 6 Jan 2022 15:04:59 -1000 Subject: [PATCH] Added solution to 8.4 --- chapter/chapter8.tex | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) diff --git a/chapter/chapter8.tex b/chapter/chapter8.tex index 249830c..2f7e020 100644 --- a/chapter/chapter8.tex +++ b/chapter/chapter8.tex @@ -20,6 +20,28 @@ \chapter{Quantum noise and quantum operations} \Textbf{8.4} +First let's compute $U$ +\begin{align*} + U & = P_0 \otimes I + P_1 \otimes X\\ + & = \begin{bmatrix} I & 0 \\ 0 & X \end{bmatrix}\\ + & = \begin{bmatrix} 1 &0 & 0 & 0\\ + 0 & 1 & 0 & 0\\ + 0 & 0 & 0 & 1\\ + 0 & 0 & 1 & 0 + \end{bmatrix}\\ + & = C_{NOT} +\end{align*} +Recall: Operator-sum representation is $\mathcal E(\rho) = \sum_k E_k \rho E_k^\dagger$, where $E_k = \braket{e_k | U | e_0}$.\\ +Given in the problem prompt, the environment initializes in $\ket 0$ +\begin{align*} + \therefore \ket{e_0} = \ket 0 +\end{align*} +Our final answer is: +\begin{align*} + \boxed{\mathcal E(\rho) = \sum_k E_k \rho E_k^\dagger \ \text{ s.t. } \ E_k = \braket{e_k | C_{NOT} | 0}} +\end{align*} + + \Textbf{8.5} \Textbf{8.6} \Textbf{8.7}