-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
737 lines (634 loc) · 27.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
"""
Train SVM classifier using SGD or SVC on radar data.
Example usage:
$ python3 ./train.py \
--datasets datasets/radar_samples_25Nov20.pickle datasets/radar_samples.pickle \
--epochs 4
Copyright (c) 2020 Lindo St. Angel
"""
import os
import collections
import pickle
import argparse
import logging
import sys
import functools
import itertools
import numpy as np
from scipy import ndimage
import matplotlib.pyplot as plt
from sklearn import (model_selection, metrics, preprocessing, linear_model,
svm, utils, calibration)
import common
logger = logging.getLogger(__name__)
# Define a seed so random operations are the same from run to run.
RANDOM_SEED = 1234
class DataGenerator(object):
"""Generate augmented radar data."""
def __init__(
self, rotation_range=None, zoom_range=None,
noise_sd=None, balance=False):
"""Initialize generator behavior.
Args:
rotation_range (float): Range of angles to rotate data [-rotation_range, rotation_range].
zoom_range (float): Range of scale factors to zoom data [1-zoom_range, 1+zoom_range].
noise_sd (float): Standard deviation of Gaussian noise added to data.
balance: (bool): Balance classes while augmenting data. This will make all class samples
equal to the minority class samples which may lead to large data sets for highly
imbalanced classes.
Note:
Augmenting data with balance set may not result in perfect balance.
"""
self.rotation_range = rotation_range
self.zoom_range = zoom_range
self.noise_sd = noise_sd
self.balance = balance
def flow(
self, x, y, batch_size=32, save_to_dir=None,
save_prefix='./datasets/augment'):
"""Yield batches of augmented radar data.
Args:
x (list of np.array): Data to augment.
y (list of int): Labels of data to augment.
batch_size (int): Size of sub-groups of data to process.
save_to_dir (bool): If true save augmented data to disk.
save_prefix (str): Location to save augmented data.
Yields:
x_batch (list of np.array): Batch of augmented data.
y_batch (np.array): Batch of augmented lables.
Examples:
for e in range(EPOCHS):
batch = 0
for X_batch, y_batch in data_gen.flow(xc, yc, batch_size=BATCH_SIZE):
X_train.extend(X_batch)
y_train.extend(y_batch)
batch += 1
if batch >= len(xc) / BATCH_SIZE:
break
"""
def augment(x_batch, y_batch, class_weights):
rg = np.random.Generator(np.random.PCG64())
def rotate(p):
"""Rotate projection."""
angle = np.random.uniform(-1*self.rotation_range, self.rotation_range)
out = ndimage.rotate(p, angle, reshape=False)
# Clamp to [0,1].
out[out>1.0] = 1.0
out[out<0.0] = 0.0
return out
def clipped_zoom(img, zoom_factor, **kwargs):
"""Generate zoomed versions of radar scans keeping array size constant.
Note:
https://stackoverflow.com/questions/37119071/
"""
h, w = img.shape[:2]
# For multichannel images we don't want to apply the zoom factor to the RGB
# dimension, so instead we create a tuple of zoom factors, one per array
# dimension, with 1's for any trailing dimensions after the width and height.
zoom_tuple = (zoom_factor,) * 2 + (1,) * (img.ndim - 2)
# Zooming out
if zoom_factor < 1:
# Bounding box of the zoomed-out image within the output array
zh = int(np.round(h * zoom_factor))
zw = int(np.round(w * zoom_factor))
top = (h - zh) // 2
left = (w - zw) // 2
# Zero-padding
out = np.zeros_like(img)
out[top:top+zh, left:left+zw] = ndimage.zoom(img, zoom_tuple, **kwargs)
# Zooming in
elif zoom_factor > 1:
# Bounding box of the zoomed-in region within the input array
zh = int(np.ceil(h / zoom_factor))
zw = int(np.ceil(w / zoom_factor))
top = (h - zh) // 2
left = (w - zw) // 2
out = ndimage.zoom(img[top:top+zh, left:left+zw], zoom_tuple, **kwargs)
# `out` might still be slightly larger than `img` due to rounding, so
# trim off any extra pixels at the edges
trim_top = ((out.shape[0] - h) // 2)
trim_left = ((out.shape[1] - w) // 2)
out = out[trim_top:trim_top+h, trim_left:trim_left+w]
# If zoom_factor == 1, just return the input array
else:
out = img
# Clamp to [0,1].
out[out>1.0] = 1.0
out[out<0.0] = 0.0
return out
def sparse_noise(q, sd):
"""Add Gaussian noise w/o breaking sparsity."""
qc = q.copy() # do not mutate original list
qc[qc!=0] += rg.normal(scale=sd)
# Clamp to [0,1].
qc[qc>1.0] = 1.0
qc[qc<0.0] = 0.0
return qc
aug_x = []
aug_y = []
for xb, yb in zip(x_batch, y_batch):
for _ in range(int(np.round(class_weights[yb]))):
# Generate new tuple of rotated projections.
# Rotates each projection independently.
if self.rotation_range is not None:
new_t = tuple(rotate(p) for p in xb)
aug_x.append(new_t)
aug_y.append(yb)
# Generate new tuple of zoomed projections.
# Use same zoom scale for all projections.
if self.zoom_range is not None:
zoom_factor = np.random.uniform(
1.0 - self.zoom_range,
1.0 + self.zoom_range
)
new_t = tuple(clipped_zoom(p, zoom_factor) for p in xb)
aug_x.append(new_t)
aug_y.append(yb)
# Generate new tuple of projections with Gaussian noise.
# Adds noise to each projection independently.
if self.noise_sd is not None:
new_t = tuple(sparse_noise(p, self.noise_sd) for p in xb)
aug_x.append(new_t)
aug_y.append(yb)
return aug_x, np.array(aug_y)
# Determine parameters to balance data.
# Most common classes and their counts from the most common to the least.
c = collections.Counter(y)
mc = c.most_common()
logger.debug(f'class most common: {mc}')
if self.balance:
class_weights = {c : mc[0][1] / cnt for c, cnt in mc}
else:
class_weights = {c : 1 for c, _ in mc}
logger.debug(f'class_weights: {class_weights}')
# Generate augmented data.
# Runs forever. Loop needs to be broken by calling function.
batch = 0
while True:
for pos in range(0, len(x), batch_size):
remaining = len(x) - pos
end = remaining if remaining < batch_size else batch_size
x_batch = x[pos:pos + end]
y_batch = y[pos:pos + end]
yield augment(x_batch, y_batch, class_weights)
# Save augmented batches to disk if desired.
if save_to_dir is not None:
fname = f'batch_{str(batch)}_{str(pos)}.pickle'
with open(os.path.join(save_prefix, fname), 'wb') as fp:
pickle.dump({'x_batch':x_batch, 'y_batch':y_batch}, fp)
batch += 1
def evaluate_model(model, X_test, y_test, target_names, cm_name):
"""Generate model confusion matrix and classification report."""
y_pred = model.predict(X_test)
logger.info(f'Accuracy: {metrics.accuracy_score(y_test, y_pred)}')
cm = metrics.confusion_matrix(y_test, y_pred)
logger.info(f'Confusion matrix:\n{cm}')
cm_figure = plot_confusion_matrix(cm, class_names=target_names)
logger.info(f'Saving confusion matrix plot to: {cm_name}')
cm_figure.savefig(cm_name)
cm_figure.clf()
cls_report = metrics.classification_report(
y_test, y_pred, target_names=target_names
)
logger.info(f'Classification report:\n{cls_report}')
def balance_classes(labels, data):
"""Balance classess."""
# Most common classes and their counts from the most common to the least.
c = collections.Counter(labels)
mc = c.most_common()
# Return if already balanced.
if len(set([c for _, c in mc])) == 1: return labels, data
#print(f'Unbalanced most common: {mc}')
#print(f'Unbalanced label len: {len(labels)}')
#print(f'Unbalanced data len: {len(data)}')
# Build a list of class indices from most common rankings.
indices = [np.nonzero(labels==i)[0] for (i, _) in mc]
# Use that list to build a list of label sets corresponding to each class.
labels_list = [labels[i] for i in indices]
# Use that list again to build a list of data sets corresponding to each class.
data_list = [data[i] for i in indices]
# Upsample data and label sets.
_, majority_size = mc[0]
def upsample(samples):
return utils.resample(
samples,
replace=True, # sample with replacement
n_samples=majority_size, # to match majority class
random_state=RANDOM_SEED) # reproducible results
data_upsampled = [upsample(data) for data in data_list]
labels_upsampled = [upsample(label) for label in labels_list]
# Recombine the separate, and now upsampled, label and data sets.
data_balanced = functools.reduce(
lambda a, b: np.vstack((a, b)), data_upsampled)
labels_balanced = functools.reduce(
lambda a, b: np.concatenate((a, b)), labels_upsampled)
c = collections.Counter(labels_balanced)
mc = c.most_common()
#print(f'Balanced most common: {mc}')
#print(f'Balanced label len: {len(labels_balanced)}')
#print(f'Balanced data len: {len(data_balanced)}')
return labels_balanced, data_balanced
def plot_dataset(labels, data):
plt.matshow(data.transpose(), fignum='all classes', aspect='auto')
c = collections.Counter(labels)
mc = c.most_common()
# Build a list of class indices from most common rankings.
indices = [np.nonzero(labels==i)[0] for (i, _) in mc]
# Use that list to build a list of data sets corresponding to each class.
data_list = [data[i] for i in indices]
# Plot data set per class.
for c, d in enumerate(data_list):
plt.matshow(d.transpose(), fignum=f'class {str(c)}', aspect='auto')
plt.show()
def plot_confusion_matrix(cm, class_names):
"""Returns a matplotlib figure containing the plotted confusion matrix.
Args:
cm (array, shape = [n, n]): a confusion matrix of integer classes
class_names (array, shape = [n]): String names of the integer classes
"""
figure = plt.figure(figsize=(8, 8))
ax = plt.gca()
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.title('Confusion matrix')
plt.colorbar(im, fraction=0.046, pad=0.04)
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names, rotation=45)
plt.yticks(tick_marks, class_names)
# Normalize the confusion matrix.
cm = np.around(cm.astype('float') / cm.sum(axis=1)[:, np.newaxis], decimals=2)
# Use white text if squares are dark; otherwise black.
threshold = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
color = 'white' if cm[i, j] > threshold else 'black'
plt.text(j, i, cm[i, j], horizontalalignment='center', color=color)
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
return figure
def sgd_fit(
train,
test,
proj_mask,
online_learn,
svm_model,
epochs,
folds=5,
batch_size=32):
""" Fit SVM using SGD on data set.
Args:
train (tuple of list): (X, y) train data.
test (tuple of list): (X, y) test data.
proj_mask (Namedtuple): Radar projections to use for training.
online_learn (bool): If True perform online learning with data.
svm_model (str): Name of existing svm model for online learning.
epochs (int): Number of times to augment data.
folds (int, optional): Number of folds for the Stratified K-Folds
cross-validator. Default=5
batch_size (int, optional): Augment batch size. Default=32.
Returns:
estimator: Estimator that was chosen by grid search.
"""
def find_best_sgd_svm_estimator(X, y, cv, random_seed):
"""Exhaustive search over specified parameter values for svm using sgd.
Returns:
optimized svm estimator.
"""
max_iter = max(np.ceil(10**6 / len(X)), 1000)
small_alphas = [10.0e-08, 10.0e-09, 10.0e-10]
alphas = [10.0e-04, 10.0e-05, 10.0e-06, 10.0e-07]
l1_ratios = [0.075, 0.15, 0.30]
param_grid = [
{'alpha': alphas, 'penalty': ['l1', 'l2'], 'average':[False]},
{'alpha': alphas, 'penalty': ['elasticnet'], 'average':[False],
'l1_ratio': l1_ratios},
{'alpha': small_alphas, 'penalty': ['l1', 'l2'], 'average':[True]},
{'alpha': small_alphas, 'penalty': ['elasticnet'], 'average':[True],
'l1_ratio': l1_ratios}
]
init_est = linear_model.SGDClassifier(loss='log', max_iter=max_iter,
random_state=random_seed, n_jobs=-1, warm_start=True)
grid_search = model_selection.GridSearchCV(estimator=init_est,
param_grid=param_grid, verbose=2, n_jobs=-1, cv=cv)
grid_search.fit(X, y)
#print('\n All results:')
#print(grid_search.cv_results_)
logger.info('\n Best estimator:')
logger.info(grid_search.best_estimator_)
logger.info('\n Best score for {}-fold search:'.format(folds))
logger.info(grid_search.best_score_)
logger.info('\n Best hyperparameters:')
logger.info(grid_search.best_params_)
return grid_search.best_estimator_
X_train, y_train = train
X_test, y_test = test
# Make a copy of train set for later use in augmentation.
if epochs:
xc = X_train.copy()
yc = y_train.copy()
# Generate feature vectors from radar projections.
logger.info('Generating feature vectors.')
X_train = common.process_samples(X_train, proj_mask=proj_mask)
X_test = common.process_samples(X_test, proj_mask=proj_mask)
logger.info(f'Feature vector length: {X_train.shape[1]}')
# Balance classes.
logger.info('Balancing classes.')
y_train, X_train = balance_classes(y_train, X_train)
if not online_learn:
# Find best initial classifier.
logger.info('Running best fit with new data.')
skf = model_selection.StratifiedKFold(n_splits=folds)
clf = find_best_sgd_svm_estimator(
X_train, y_train,
skf.split(X_train, y_train), RANDOM_SEED
)
else:
# Fit existing classifier with new data.
logger.info('Running partial fit with new data.')
with open(os.path.join(common.PRJ_DIR, svm_model), 'rb') as fp:
clf = pickle.load(fp)
max_iter = max(np.ceil(10**6 / len(X_train)), 1000)
for _ in range(max_iter):
clf.partial_fit(X_train, y_train)
# Augment training set and use to run partial fits on classifier.
if epochs:
logger.info(f'Running partial fit with augmented data (epochs: {epochs}).')
y_predicted = clf.predict(X_test)
logger.debug(f'Un-augmented accuracy: {metrics.accuracy_score(y_test, y_predicted)}.')
data_gen = DataGenerator(
rotation_range=5.0, zoom_range=0.2, noise_sd=0.1, balance=True)
for e in range(epochs):
logger.debug(f'Augment epoch: {e}.')
batch = 0
for X_batch, y_batch in data_gen.flow(xc, yc, batch_size=batch_size):
logger.debug(f'Augment batch: {batch}.')
X_batch = common.process_samples(X_batch, proj_mask=proj_mask)
y_batch, X_batch = balance_classes(y_batch, X_batch)
clf.partial_fit(X_batch, y_batch, classes=np.unique(y_train))
y_predicted = clf.predict(X_test)
acc = metrics.accuracy_score(y_test, y_predicted)
logger.debug(f'Augmented accuracy: {acc}.')
batch += 1
if batch >= len(xc) / batch_size:
break
return clf
def svc_fit(
train,
proj_mask,
epochs,
folds=5,
batch_size=32):
""" Fit SVM using SVC on data set.
Args:
train (tuple of list): (X, y) train data.
proj_mask (Namedtuple): Radar projections to use for training.
epochs (int): Number of times to augment data.
folds (int, optional): Number of folds for the Stratified K-Folds
cross-validator. Default=5
batch_size (int, optional): Augment batch size. Default=32.
Returns:
estimator: Estimator that was chosen by grid search.
"""
def find_best_svm_estimator(X, y, cv, random_seed):
"""Exhaustive search over specified parameter values for svm.
Returns:
optimized svm estimator.
Note:
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
"""
print('\n Finding best svm estimator...')
Cs = [0.01, 0.1, 1, 10, 100]
gammas = [0.001, 0.01, 0.1, 1, 10]
param_grid = [
{'C': Cs, 'kernel': ['linear']},
{'C': Cs, 'gamma': gammas, 'kernel': ['rbf']}
]
init_est = svm.SVC(probability=True, class_weight='balanced',
random_state=random_seed, cache_size=1000, verbose=False)
grid_search = model_selection.GridSearchCV(estimator=init_est,
param_grid=param_grid, verbose=2, n_jobs=4, cv=cv)
grid_search.fit(X, y)
#print('\n All results:')
#print(grid_search.cv_results_)
logger.info('\n Best estimator:')
logger.info(grid_search.best_estimator_)
logger.info('\n Best score for {}-fold search:'.format(folds))
logger.info(grid_search.best_score_)
logger.info('\n Best hyperparameters:')
logger.info(grid_search.best_params_)
return grid_search.best_estimator_
X_train, y_train = train
# Augment training set.
if epochs:
data_gen = DataGenerator(rotation_range=15.0, zoom_range=0.3, noise_sd=0.2)
logger.info('Augmenting data set.')
logger.info(f'Original number of training samples: {y_train.shape[0]}')
# Faster to use a list in below ops.
y_train = y_train.tolist()
# Do not mutate original lists.
xc = X_train.copy()
yc = y_train.copy()
for e in range(epochs):
logger.debug(f'epoch: {e}')
batch = 0
for X_batch, y_batch in data_gen.flow(xc, yc, batch_size=batch_size):
logger.debug(f'batch: {batch}')
X_train.extend(X_batch)
y_train.extend(y_batch)
batch += 1
if batch >= len(xc) / batch_size:
break
# Sanity check if augmentation introduced a scaling problem.
max = np.amax([[np.concatenate(t, axis=None)] for t in X_train])
assert abs(max - 1.0) < 1e-6, 'scale error'
# Convert y_train back to np array.
y_train = np.array(y_train, dtype=np.int8)
logger.info(f'Augmented number of training samples: {y_train.shape[0]}')
logger.info('Generating feature vectors from radar projections.')
X_train = common.process_samples(X_train, proj_mask=proj_mask)
logger.info(f'Feature vector length: {X_train.shape[1]}')
# Balance classes.
logger.info('Balancing classes.')
y_train, X_train = balance_classes(y_train, X_train)
skf = model_selection.StratifiedKFold(n_splits=folds)
# Find best classifier.
logger.info('Finding best classifier.')
clf = find_best_svm_estimator(
X_train, y_train,
skf.split(X_train, y_train), RANDOM_SEED
)
return clf
if __name__ == '__main__':
# Log file name.
default_log_file = 'train-results/train.log'
# Training datasets.
default_datasets = ['datasets/radar_samples.pickle']
# SVM confusion matrix name.
default_svm_cm = 'train-results/svm_cm.png'
# SVM model name.
default_svm_model = 'train-results/svm_radar_classifier.pickle'
# Label encoder name.
default_label_encoder = 'train-results/radar_labels.pickle'
# Radar 2-D projections to use for predictions (xy, xz, yz).
default_proj_mask = [True, True, True]
# Labels to use for training.
default_desired_labels = ['person', 'dog', 'cat']
# Each epoch augments entire data set (zero disables).
default_epochs = 0
# Fraction of data set used for training, validation, testing.
# Must sum to 1.0.
default_train_val_test_frac = [0.8, 0.1, 0.1]
parser = argparse.ArgumentParser()
parser.add_argument(
'--epochs', type=int,
help='number of augementation epochs',
default=default_epochs
)
parser.add_argument(
'--datasets', nargs='+', type=str,
help='paths to training datasets',
default=default_datasets
)
parser.add_argument(
'--desired_labels', nargs='+', type=str,
help='labels to use for training',
default=default_desired_labels
)
parser.add_argument(
'--proj_mask', nargs='+', type=bool,
help='projection mask (xy, xz, yz)',
default=default_proj_mask
)
parser.add_argument(
'--svm_cm', type=str,
help='path of output svm confusion matrix',
default=os.path.join(common.PRJ_DIR, default_svm_cm)
)
parser.add_argument(
'--svm_model', type=str,
help='path of output svm model name',
default=os.path.join(common.PRJ_DIR, default_svm_model)
)
parser.add_argument(
'--label_encoder', type=str,
help='path of output label encoder',
default=os.path.join(common.PRJ_DIR, default_label_encoder)
)
parser.add_argument(
'--logging_level', type=str,
help='logging level, "info" or "debug"',
default='info'
)
parser.add_argument(
'--online_learn', action='store_true',
help='use dataset(s) for online learning (ignored if --use_svc'
)
parser.add_argument(
'--use_svc', action='store_true',
help='use svm.SVC instead of linear_model.SGDClassifier'
)
parser.add_argument(
'--train_val_test_frac', nargs='+', type=float,
help='train, val, test fraction of data set. must sum to 1.0',
default=default_train_val_test_frac
)
parser.add_argument(
'--log_file', type=str,
help='path of output svm model name',
default=os.path.join(common.PRJ_DIR, default_log_file)
)
parser.set_defaults(online_learn=False)
parser.set_defaults(use_svc=False)
args = parser.parse_args()
logging.basicConfig(
format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
level=logging.DEBUG if args.logging_level=='debug' else logging.INFO,
handlers=[
logging.FileHandler(args.log_file, mode='w'),
logging.StreamHandler(sys.stdout)
]
)
# Combine multiple datasets if given.
samples = []
labels = []
for dataset in args.datasets:
logger.info(f'Opening dataset: {dataset}')
try:
with open(os.path.join(common.PRJ_DIR, dataset), 'rb') as fp:
data_pickle = pickle.load(fp)
except FileNotFoundError as e:
logger.error(f'Dataset not found: {e}')
exit(1)
logger.debug(f'Found class labels: {set(data_pickle["labels"])}.')
samples.extend(data_pickle['samples'])
labels.extend(data_pickle['labels'])
data = {'samples': samples, 'labels': labels}
# Filter desired classes.
logger.info('Maybe filtering classes.')
desired = list(
map(lambda x: 1 if x in args.desired_labels else 0, data['labels'])
)
# Samples are in the form [(xz, yz, xy), ...] in range [0, RADAR_MAX].
samples = [s for i, s in enumerate(data['samples']) if desired[i]]
# Scale each feature to the [0, 1] range without breaking the sparsity.
logger.info('Scaling samples.')
samples = [[p / common.RADAR_MAX for p in s] for s in samples]
# Encode the labels.
logger.info('Encoding labels.')
le = preprocessing.LabelEncoder()
desired_labels = [l for i, l in enumerate(data['labels']) if desired[i]]
encoded_labels = le.fit_transform(desired_labels)
class_names = list(le.classes_)
# Data set summary.
logger.info(f'Found {len(class_names)} classes and {len(desired_labels)} samples:')
for i, c in enumerate(class_names):
logger.info(f'...class: {i} "{c}" count: {np.count_nonzero(encoded_labels==i)}')
# Split data and labels up into train, validation and test sets.
logger.info(f'Splitting data set:')
train_frac, val_frac, test_frac = args.train_val_test_frac
X_train, X_val_test, y_train, y_val_test = model_selection.train_test_split(
samples, encoded_labels, test_size=val_frac + test_frac,
random_state=RANDOM_SEED, shuffle=True
)
val_split = int(len(X_val_test) * val_frac / (val_frac + test_frac))
X_val, y_val = X_val_test[:val_split], y_val_test[:val_split]
X_test, y_test = X_val_test[val_split:], y_val_test[val_split:]
logger.info(f'...training samples: {len(X_train)}')
logger.info(f'...validation samples: {len(X_val)}')
logger.info(f'...test samples: {len(X_test)}')
proj_mask=common.ProjMask(*args.proj_mask)
logger.info(f'Projection mask: {proj_mask}')
logger.info(f'Augment epochs: {args.epochs}')
logger.info(f'Online learning: {args.online_learn}')
if not args.use_svc:
logger.info('Using SVM algo: SGDClassifier.')
clf = sgd_fit(
train=(X_train, y_train),
test=(X_test, y_test),
proj_mask=args.proj_mask,
online_learn=args.online_learn,
svm_model=args.svm_model,
epochs=args.epochs
)
else:
logger.info('Using SVM algo: SVC.')
clf = svc_fit(
train=(X_train, y_train),
proj_mask=args.proj_mask,
epochs=args.epochs
)
# Generate feature vectors.
X_val_fv = common.process_samples(X_val, proj_mask=proj_mask)
X_test_fv = common.process_samples(X_test, proj_mask=proj_mask)
logger.info('Calibrating classifier.')
cal_clf = calibration.CalibratedClassifierCV(base_estimator=clf, cv='prefit')
cal_clf.fit(X_val_fv, y_val)
logger.info('Evaluating final classifier on test set.')
evaluate_model(cal_clf, X_test_fv, y_test, class_names, args.svm_cm)
logger.info(f'Saving svm model to: {args.svm_model}.')
with open(args.svm_model, 'wb') as outfile:
outfile.write(pickle.dumps(cal_clf))
# Do not overwrite label encoder if online learning was performed.
if not args.online_learn or args.use_svc:
logger.info(f'Saving label encoder to: {args.label_encoder}.')
with open(args.label_encoder, 'wb') as outfile:
outfile.write(pickle.dumps(le))