-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathInceptionResNetV2.log
65 lines (58 loc) · 4.5 KB
/
InceptionResNetV2.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
2020-03-07 04:26:02,849 __main__ INFO Getting dataframe with alt_label: False.
2020-03-07 04:26:02,916 __main__ INFO Running with test enabled.
2020-03-07 04:26:02,919 __main__ INFO Found 5 classes in data set.
2020-03-07 04:26:02,919 __main__ INFO Creating model with cnn base: InceptionResNetV2
2020-03-07 04:26:02,919 __main__ INFO batch size: 32, dense units 128, dropout: 0.2
2020-03-07 04:26:02,919 __main__ INFO learning rate: 0.0001, l2 penalty: 0.0001, freeze 200
2020-03-07 04:26:17,854 __main__ INFO Generating validation dataset.
2020-03-07 04:26:17,870 __main__ INFO Generating train dataset.
2020-03-07 04:26:17,881 __main__ INFO Class dict: {'Unknown': 0, 'eva_st_angel': 1, 'lindo_st_angel': 2, 'nico_st_angel': 3, 'nikki_st_angel': 4}
2020-03-07 04:26:17,881 __main__ INFO Number of training samples: 5839
2020-03-07 04:26:17,881 __main__ INFO Number of validation samples: 1459
2020-03-07 04:26:17,881 __main__ INFO Class weights: {4: 1.9443207126948776, 0: 1.0186697782963827, 2: 1.0, 1: 2.954314720812183, 3: 1.9617977528089887}
2020-03-07 04:26:17,881 __main__ INFO Steps per epoch: 182
2020-03-07 04:26:17,881 __main__ INFO Validation steps: 45
2020-03-07 04:26:17,881 __main__ INFO Starting pass 1.
2020-03-07 05:28:17,131 __main__ INFO Finished pass 1.
2020-03-07 05:28:30,581 __main__ INFO Starting pass 2 with learning rate: 1e-05
2020-03-07 06:57:35,047 __main__ INFO Finished pass 2.
2020-03-07 06:58:57,318 tensorflow WARNING From /home/lindo/.virtualenvs/szm/lib/python3.6/site-packages/tensorflow_core/python/ops/resource_variable_ops.py:1786: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
Instructions for updating:
If using Keras pass *_constraint arguments to layers.
2020-03-07 06:59:07,560 tensorflow INFO Assets written to: /home/lindo/develop/smart-zoneminder/person-class/train-results/InceptionResNetV2/1/assets
2020-03-07 06:59:14,774 __main__ INFO Exported SavedModel to /home/lindo/develop/smart-zoneminder/person-class/train-results/InceptionResNetV2
2020-03-07 06:59:14,775 __main__ INFO Evaluating model on 1825 test samples.
2020-03-07 06:59:44,517 __main__ INFO Classification report:
precision recall f1-score support
Unknown 0.89 0.86 0.87 534
eva_st_angel 0.89 0.91 0.90 166
lindo_st_angel 0.94 0.94 0.94 516
nico_st_angel 0.90 0.92 0.91 299
nikki_st_angel 0.89 0.93 0.91 310
accuracy 0.91 1825
macro avg 0.90 0.91 0.91 1825
weighted avg 0.91 0.91 0.91 1825
2020-03-07 06:59:44,520 __main__ INFO Confusion matrix:
[[459 12 21 16 26]
[ 5 151 1 4 5]
[ 26 1 483 4 2]
[ 14 2 6 274 3]
[ 14 3 1 5 287]]
2020-03-07 07:01:10,050 __main__ INFO Quantized tflite model saved to: /home/lindo/develop/smart-zoneminder/person-class/train-results/InceptionResNetV2-person-classifier-quant.tflite
2020-03-07 07:01:13,350 __main__ INFO Edge TPU model compilation results:
Edge TPU Compiler version 2.0.291256449
Model compiled successfully in 2912 ms.
Input model: /home/lindo/develop/smart-zoneminder/person-class/train-results/InceptionResNetV2-person-classifier-quant.tflite
Input size: 54.65MiB
Output model: /home/lindo/develop/smart-zoneminder/person-class/train-results/InceptionResNetV2-person-classifier-quant_edgetpu.tflite
Output size: 54.53MiB
On-chip memory available for caching model parameters: 5.62MiB
On-chip memory used for caching model parameters: 5.62MiB
Off-chip memory used for streaming uncached model parameters: 48.20MiB
Number of Edge TPU subgraphs: 1
Total number of operations: 396
Operation log: /home/lindo/develop/smart-zoneminder/person-class/train-results/InceptionResNetV2-person-classifier-quant_edgetpu.log
Model successfully compiled but not all operations are supported by the Edge TPU. A percentage of the model will instead run on the CPU, which is slower. If possible, consider updating your model to use only operations supported by the Edge TPU. For details, visit g.co/coral/model-reqs.
Number of operations that will run on Edge TPU: 394
Number of operations that will run on CPU: 2
See the operation log file for individual operation details.