forked from pytorch/benchmark
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
179 lines (143 loc) · 7.14 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
A lightweight runner that just sets up a model and runs one of its functions in a particular configuration.
Intended for debugging/exploration/profiling use cases, where the test/measurement harness is overhead.
DANGER: make sure to `python install.py` first or otherwise make sure the benchmark you are going to run
has been installed. This script intentionally does not automate or enforce setup steps.
Wall time provided for sanity but is not a sane benchmark measurement.
"""
import argparse
import time
import torch.profiler as profiler
from torchbenchmark import list_models
import torch
WARMUP_ROUNDS = 3
def run_one_step_with_cudastreams(func, streamcount):
print("Running Utilization Scaling Using Cuda Streams")
streamlist = []
for i in range(1, streamcount + 1, 1):
# create additional streams and prime with load
while len(streamlist) < i :
s = torch.cuda.Stream()
streamlist.append(s)
for s in streamlist:
with torch.cuda.stream(s):
func()
torch.cuda.synchronize() # Wait for the events to be recorded!
# now run benchmark using streams
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
for s in streamlist:
with torch.cuda.stream(s):
func()
end_event.record()
torch.cuda.synchronize()
print(f"Cuda StreamCount:{len(streamlist)}")
print('{:<20} {:>20}'.format("GPU Time:", "%.3f milliseconds" % start_event.elapsed_time(end_event)), sep='')
def run_one_step(func, nwarmup=WARMUP_ROUNDS):
# Warm-up `nwarmup` rounds
for _i in range(nwarmup):
func()
if args.device == "cuda":
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
start_event.record()
# Collect time_ns() instead of time() which does not provide better precision than 1
# second according to https://docs.python.org/3/library/time.html#time.time.
t0 = time.time_ns()
func()
t1 = time.time_ns()
end_event.record()
torch.cuda.synchronize()
t2 = time.time_ns()
# CPU Dispatch time include only the time it took to dispatch all the work to the GPU.
# CPU Total Wall Time will include the CPU Dispatch, GPU time and device latencies.
print('{:<20} {:>20}'.format("GPU Time:", "%.3f milliseconds" % start_event.elapsed_time(end_event)), sep='')
print('{:<20} {:>20}'.format("CPU Dispatch Time:", "%.3f milliseconds" % ((t1 - t0) / 1_000_000)), sep='')
print('{:<20} {:>20}'.format("CPU Total Wall Time:", "%.3f milliseconds" % ((t2 - t0) / 1_000_000)), sep='')
else:
t0 = time.time_ns()
func()
t1 = time.time_ns()
print('{:<20} {:>20}'.format("CPU Total Wall Time:", "%.3f milliseconds" % ((t1 - t0) / 1_000_000)), sep='')
def profile_one_step(func, nwarmup=WARMUP_ROUNDS):
activity_groups = []
if ((not args.profile_devices and args.device == 'cuda') or
(args.profile_devices and 'cuda' in args.profile_devices)):
print("Collecting CUDA activity.")
activity_groups.append(profiler.ProfilerActivity.CUDA)
if ((not args.profile_devices and args.device == 'cpu') or
(args.profile_devices and 'cpu' in args.profile_devices)):
print("Collecting CPU activity.")
activity_groups.append(profiler.ProfilerActivity.CPU)
with profiler.profile(
schedule=profiler.schedule(wait=0, warmup=nwarmup, active=1),
activities=activity_groups,
record_shapes=args.profile_detailed,
profile_memory=args.profile_detailed,
with_stack=args.profile_detailed,
with_flops=args.profile_detailed,
on_trace_ready=profiler.tensorboard_trace_handler(args.profile_folder)
) as prof:
for _i in range(nwarmup + 1):
func()
torch.cuda.synchronize() # Need to sync here to match run_one_step()'s timed run.
prof.step()
print(prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total", row_limit=30))
print(f"Saved TensorBoard Profiler traces to {args.profile_folder}.")
def _validate_devices(devices: str):
devices_list = devices.split(",")
valid_devices = ['cpu', 'cuda']
for d in devices_list:
if d not in valid_devices:
raise ValueError(f'Invalid device {d} passed into --profile-devices. Expected devices: {valid_devices}.')
return devices_list
if __name__ == "__main__":
parser = argparse.ArgumentParser(__doc__)
parser.add_argument("model", help="Full or partial name of a model to run. If partial, picks the first match.")
parser.add_argument("-d", "--device", choices=["cpu", "cuda"], default="cpu", help="Which device to use.")
parser.add_argument("-m", "--mode", choices=["eager", "jit"], default="eager", help="Which mode to run.")
parser.add_argument("-t", "--test", choices=["eval", "train"], default="eval", help="Which test to run.")
parser.add_argument("--profile", action="store_true", help="Run the profiler around the function")
parser.add_argument("--profile-folder", default="./logs", help="Save profiling model traces to this directory.")
parser.add_argument("--profile-detailed", action="store_true",
help="Profiling includes record_shapes, profile_memory, with_stack, and with_flops.")
parser.add_argument("--profile-devices", type=_validate_devices,
help="Profiling comma separated list of activities such as cpu,cuda.")
parser.add_argument("--cudastreams", action="store_true",
help="Utilization test using increasing number of cuda streams.")
parser.add_argument("--bs", type=int, help="Specify batch size to the test.")
args = parser.parse_args()
if args.cudastreams and not args.device == "cuda":
print("cuda device required to use --cudastreams option!")
exit(-1)
found = False
for Model in list_models():
if args.model.lower() in Model.name.lower():
found = True
break
if found:
print(f"Running {args.test} method from {Model.name} on {args.device} in {args.mode} mode.")
else:
print(f"Unable to find model matching {args.model}.")
exit(-1)
# build the model and get the chosen test method
if args.bs:
try:
if args.test == "eval":
m = Model(device=args.device, jit=(args.mode == "jit"), eval_bs=args.bs)
elif args.test == "train":
m = Model(device=args.device, jit=(args.mode == "jit"), train_bs=args.bs)
except:
print(f"The model {args.model} doesn't support specifying batch size, please remove --bs argument in the commandline.")
exit(1)
else:
m = Model(device=args.device, jit=(args.mode == "jit"))
test = getattr(m, args.test)
if args.profile:
profile_one_step(test)
elif args.cudastreams:
run_one_step_with_cudastreams(test, 10)
else:
run_one_step(test)