From e06f203b143e48e6480036145cb414454d6661a0 Mon Sep 17 00:00:00 2001 From: Erik Sverdrup Date: Sat, 7 Sep 2024 23:11:07 -0700 Subject: [PATCH] Add reference to Causal Inference: A Statistical Learning Approach (#1441) --- README.md | 4 ++++ r-package/grf/vignettes/grf_guide.Rmd | 2 +- r-package/grf/vignettes/policy_learning.Rmd | 2 +- 3 files changed, 6 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 3a3f795d6..2f3ac56e1 100755 --- a/README.md +++ b/README.md @@ -165,6 +165,10 @@ Erik Sverdrup, Maria Petukhova, and Stefan Wager. Estimating Treatment Effect Heterogeneity in Psychiatry: A Review and Tutorial with Causal Forests. 2024. [arxiv] +Stefan Wager. +Causal Inference: A Statistical Learning Approach. 2024. +[pdf] + Stefan Wager and Susan Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113(523), 2018. diff --git a/r-package/grf/vignettes/grf_guide.Rmd b/r-package/grf/vignettes/grf_guide.Rmd index a6d40bad9..238aa74b1 100644 --- a/r-package/grf/vignettes/grf_guide.Rmd +++ b/r-package/grf/vignettes/grf_guide.Rmd @@ -405,7 +405,7 @@ qini.age * [Machine Learning & Causal Inference: A Short Course](https://www.youtube.com/playlist?list=PLxq_lXOUlvQAoWZEqhRqHNezS30lI49G-) (video lectures) -* [Lecture notes - causal inference PhD course at Stanford](http://web.stanford.edu/~swager/stats361.pdf) +* [Causal Inference: A Statistical Learning Approach](https://web.stanford.edu/~swager/causal_inf_book.pdf) (book)
diff --git a/r-package/grf/vignettes/policy_learning.Rmd b/r-package/grf/vignettes/policy_learning.Rmd index 0f7081bb0..24f597ac0 100644 --- a/r-package/grf/vignettes/policy_learning.Rmd +++ b/r-package/grf/vignettes/policy_learning.Rmd @@ -81,6 +81,6 @@ values <- aggregate(dr.scores, by = list(leaf.node = node.id), print(values, digits = 2) ``` -For more statistical details please see the chapter on *Policy Learning* in [these lecture notes](https://web.stanford.edu/~swager/stats361.pdf). +For more statistical details, please see the chapter on *Policy Learning* in [Causal Inference: A Statistical Learning Approach](https://web.stanford.edu/~swager/causal_inf_book.pdf). [^algo]: A description of the tree search algorithm is given in [this paper](https://joss.theoj.org/papers/10.21105/joss.02232.pdf).