From ea03c041e237b09531a1dc3f1d988cafb7a85b57 Mon Sep 17 00:00:00 2001 From: "Alberto F. Martin" Date: Wed, 23 Aug 2023 17:10:20 +1000 Subject: [PATCH] Another error fixed ... --- src/poisson_transient.jl | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/poisson_transient.jl b/src/poisson_transient.jl index 98c3158e..7a473d3c 100644 --- a/src/poisson_transient.jl +++ b/src/poisson_transient.jl @@ -96,7 +96,7 @@ op_C = TransientConstantFEOperator(m₀,a₀,b₀,U,V) # Once we have the FE operator defined, we proceed with the definition of the transient solver. First, we define a linear solver to be used at each time step. Here we use the `LUSolver`, but other choices are possible. linear_solver = LUSolver() -# Then, we define the ODE solver. That is, the scheme that will be used for the time integration. In this tutorial we use the `Steamed` with $\theta = 0.5$, resulting in a 2nd order scheme. The `ThetaMethod` function receives the linear solver, the time step size $\Delta t$ (constant) and the value of $\theta$. +# Then, we define the ODE solver. That is, the scheme that will be used for the time integration. In this tutorial we use the `ThetaMethod` with $\theta = 0.5$, resulting in a 2nd order scheme. The `ThetaMethod` function receives the linear solver, the time step size $\Delta t$ (constant) and the value of $\theta$. Δt = 0.05 θ = 0.5 ode_solver = ThetaMethod(linear_solver,Δt,θ)