-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyperparameter_optimization.py
30 lines (28 loc) · 1.14 KB
/
hyperparameter_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import subprocess
from sklearn.model_selection import ParameterGrid
from scipy.stats import loguniform
import numpy as np
from pathlib import Path
if __name__ == "__main__":
out_folder = Path("./output").glob('**/*')
all_files = [str(x).split("/")[-1] for x in out_folder if x.is_dir()]
seed = 42
max_iter = 15000
lower_lr = 5e-4
upper_lr = 5e-3
batch_sizes = [1,2,3,4,8,16,32]
rois = [128, 256, 512]
np.random.seed(seed)
learning_rates = loguniform.rvs(lower_lr, upper_lr, size=10)
param_grid = {'lr': learning_rates, 'bs': batch_sizes, 'roi': rois}
parameters = list(ParameterGrid(param_grid))
print(all_files)
for idx, val in enumerate(parameters):
print(f"starting run {idx}/{len(parameters)}")
folder_str = f"{val['lr']}_{val['bs']}_{val['roi']}_{max_iter}"
print(folder_str)
if folder_str in all_files:
print(f"skipping run for {folder_str}")
else:
print(f"Training run {idx}: {val}")
subprocess.run(f"python3 train_faster_rcnn.py --lr {val['lr']} --bs {val['bs']} --roi {val['roi']} --max_iter {max_iter}", shell=True, check=True)